
AU3€ 012 MAH~~LANtJ LINLV LULLtbF PAI P~ UtPT 01 COMPUTER SCItNCt FIG t2/1

I

_ _ _ _ _ _ I

1.0 ~~L L

urn ‘•‘ IO~
1.25 ~III.4 I~ I.6
_ _ _ wu~~ wu~~

Mf CROCOPY R€SQw T~ON TEST CNART

~MoN*~ Su tau oc syANo*~o$—~u~~— A

-
•

F

‘

I

I

Js~
~
=:==MIj== =

~

~_ ThTECHNICAL REPORT SERIES

_ D D C

UNiVERSITY OF MARYLAND
COLLEGE PARK~ MARYLAND

20742

L —
~

-
~

— ‘
~~

— - ——
~~

— — — -—
~~~~~~ ~~~~~~~ ~~~~ 

~~~~~~~~~


—

~~~~~~ ~~~~~ JT~~~~~ L~~~

Ills mift, s~ 1m
sac Iltf $EtI. 0
I*A1IOWICED 0

IlSlIIIlTIOI/*VAIUIIUTY c~O~$

Sat AVA IL Wi~r S!EC~L 

(:1: :) 
_ _ _ _ _

(~Th~~~~~~(~~ , J
\~~~~ SPONTANEOUS COMPUTATION IN COGNITIVE W)DELS

S. I

Depar me o ompu er Science
University of Maryland

College Park, Mary land 20742

(9~ 4

“
~~ ~1 ‘—s’

ABSTRACT: The engineering and theory of a style of computation in
wnicn code runs spontaneously (as opposed to on demand) are
developed. The notion of a spontaneous computation (SC) is
defined , briefly surveyed and compared to other styles of.
computation. Then, in the hrst half of the paper, a LISP—based~system which carries out a general theory of SC is described. This.
includes: complex triggp~ patterns, ~rganization of SC triggerpatterns into associativeV trigger trees~-,’ and the structure of an =SC itself. Higher level organization and gontrol g

~ 
SC are then

discussed introducing the notion of aI~~channel~L. In the second
half of die paper some theoretical ideas about how to use SC in
cognitive models, particularly those modeling language
comprehension and problem solving, are presented and discussed.
The discussion Ancludea: SC as a model of non—algorithmic
inference SCs as”~character foUowera~ lin a story comprehension
system, S~s as subgoal protectors and plan optimizers in a problem
solver, and the relationships among SC, context and frames. In

• particular ideas related to partially triggered SCs, and their
theoretical applications as context—f ocusers and
motivation—generators are explored. The paper represents one
aspect of a larger project called the Commonsense Algorithm

• Project, and includes as appendices a self—contained system of
LISP code which implements many of the ideas discussed in the
text.

The re~~arch described in this report was fundfid by the Office of
Naval Research under contract number NOUOl4—7q~C—O477.

•~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~



-

CONTENTS

1. INTRODUCTION 1

• 1.1 Background 2
1.2 The CSA Theory and Spontaneous Computation 4
1.3 SC Basics 6
1.4 Central Arenas 8

• 2. ENGINEERING SPONTANEOUS COMPUTATION 9

2.1 Structure and Organization of SCs 9
2.1.1 Elementary Trigger Patterns 9
2.1.2 Trigger Pattern Variables 11
2.1.3 Complex Trigger Patterns 13

0 2.1.3.1 Ellipsis: Too Costly 14
• 2.1.3.2 Unordered Sets: Not a Big Problem 15

2.1.3.3 What We Did: Conplex CSA Trigger Patterns 17
2.1.4 SC Associative Access Parad igm 22
2.1.5 Trigger Trees 23

2.1.~ .1 Fragmentation 24
2.1.5.2 Trigger Tree Structure 27
2.1.5.3 Planting Associative Patterns 30
2.1.5.4 Discussion and Example 36

2.1.6 Trigger Tree Terminal Nodes 39
2.1.7 The Structure of an SC 43
2.1.8 SC Associative Tree Access and Invocation 43

2.1.8.1 Polling and SALLEINDS 46
2.1.8.2 The SC Body and Invocation Control 47

2.1.9 SCa and Context
2.2 HiRher Level Control of Spontaneous Computation 50

2.2.1 Channels 51
2 2.2 Channel Characteristics 53
2.2.3 Channel Operation 55
2.2.4 Tap Points 58
2.2.5 Possibilities for Channels 60

2.3 Some Finishing Touches on the Engineering 62
3. THEORY OF SPONTANEOUS COMPUTATION IN COGNITIVE 14)DCLS 65

3.1 Partially Triggered SCs 65
3.1.1 Pressures, Pulses, AND Gates and Memories 66
3.1.2 SC SDlittinR 69

3.1 2.1 SC splitting, Context and Frames 71
3.1.2.2 Mechanics of SC Splitting 72

3.1.3 Story Character Followers 73
3.1.4 Curiosity Queues 73

• 3.2 Spontaneous Computation as a Basis of Inference 75
3.2.1 Algorithmic Inference 76
3.2.2 Non—Algorithmic Inference 77

3.3 Spontaneous Computation in a Plan Synthesizer 78
3.3.1 SCs as Models of CSA Tendencies - 78
3.3.2 SC—based Tendencies as Synthesizer Interrupts • 81
3.3.3 Subgoal Protection 82
3.3.4 SCs as Constraint Violation Interrupts 84
3.3.5 SCs as Plan Optimizers 86

3.4 SCs as Hierarchical Situation Characterizers 87
3.5 Other Possible Arenas 88r ~ 3.5.1 Procedural Attachment 89

F 3.5.2 State of Computation Triggered SC •
‘ 89

4. CONCLUSION 91

REFERE NCES 92
Appendices A, B, C, D, B, F •.• 94

/

-~ - ~-•  S •S ~~ S — - - — - - ~~~~~~~~~~~~~~•



-S ~~~~~~~~~~~~~~ -

~~~ 
____ 5-

‘

SPONTANEOUS COMPUTATION IN COGNITIVE ~)DELS

Chuck Rieger

Department of Computer Science
University of Maryland

College Park , Maryland 20742

1. INTRODUCTION

The computations in any model of intelligence can be classified into two

categories: those which are invoked on demand, and those which occur
spontaneously. A demand—based computation is one which occurs in response to
an explicit request for a service or for information, i.e., a call by name or
a call by pattern. Spontaneous computation on the other hand is computation

which is unsolicited; it simply happens in reaction to some condition or set

of conditions becoming true. As such, spontaneous computation will represent
• the associative component of any model. It may either interrupt a demand—based

computation, or it may serve to initiate or augment a demand—based

computation.

In models of human intelligence, generic examples of demand—based

computation are problem solving, where a goal is stated then solved, and
deduction, where a question is posed then proved or disproved according to

• some logical framework. An example of spontaneous computation in cognitive

models is inference, where there is no demand source, but where new

information is nevertheless derived from existing information.

Spontaneous computation typically reacts to states of a data base, or to
changes in a data base (as in MICROPLANNER (SWC 1] and CONNIVER (llSlfl, but in
general might react to arbitrary states of computation, including calling

sequences in certain contexts, and so forth.

This paper is about the general theory and practice of spontaneous

computation (hereafter abbreviated SC), addressed from within the framework of

LISP—based models of intelligence such as are being developed under the style

of modeling known as Artificial Intelligence. In the paper , we will address

-~ — .-~~~ -5-.• -5 •5- -~~—-pS— —S~•-- - - ~~ —~--,————-.~~— __________ _~~~_5-___~~5_ -~ —~~~~~~.

1” • • •
~

• • 5- ’ •-
~~~~~

• •  —••—.. • •.-~
-• - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2

these major issues:

(1) How ought spontaneous computation to be implemented?

(2) How can it be harnessed in fruitful ways?

(3) What are its theoretical uses in modeling human intelligence?

(4) How can SC be coordinated with demand computations; i.e., when and
•

•
~ how do spontaneous computations interact with demand—based

computation?

(5) What is the • relationship of SC to existing theories of
intelligence; that is, what theories might have SC as their bases?

The paper is intended to be an assessment of some state of the art ideas about
spontaneous computat ion, together with some (hopefully new) ideas about the
engineering and theoretical utility of such computation in modeling hiasan
intelligence.

1.1 Background

There is considerable uncertainty concerning the roles of demand—based
computations (which we will sometimes call “doers”), and spontaneous

• computations (which we will sometimes call “watchers”) in models of human
intelligence, especially with regard to (a) what classes of cognitive
processes each is best suited for , and (b) how doers and watchers interact and
are coordinated.

The use of SC in models of intelligence in the past has been extensive,
but its theoretical role remains largely a mystery, since its theoretical
applications have been piecemeal.

MICROPLANNER (SWC 1], based on Hewitt’s PLANNER [111), was probably the
•

• first progr~~~ing language based principally upon the notion of spontaneous
computation. In)aCROPLANNER , changes to a central data base are monitored by
a population of watchers, called THANTE and THERASING “theorems”. As any
given pattern is entered or deleted from the database , some subset of this

• population can react , i.e., gain control of the computation after the pattern
has entered or lef t the database. Computations thu. triggered , being

J ~ — -~~~~~~~ ~~~~~
—

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ -



--S - -  ~~~~~~ •

rirJI~~~~~~r, .&r: ns~ -‘-, ~* “ - - r’J p-~~ - • - • • - -- - • 
- •• S~~~~ — — ~~•,-•-.-5 

~~~~~~~~~ ~— — - • • ,
~ -~,•‘ •— ~~, ~ -‘S• ~~~~~~~~~~~

3

arb itrary LISP programs in font , can then do whatever they desire. The
once—radical aspect of such a programming style was of course that more might
happen at run—time than would meet the eye by a simple inspection of the

• demand—based flow of control evident in the source listing s

• Since MICROPLANNER , CONNIVER (MS1], and a host of other languages with
• similar features have evolved with SC as a major component (e.g. QA4 (R4 1 ,

L .. QLISP/INTERLISP (RSI ,T1J, POPLER (Dl]) . Also , there has been considerable

interest in so—called “product ion” systems, where computat ion is phrased as a
collection of rewrite rules which, in some systems, can be quite
sophisticated. (See Davis and King (DK2I for a good overview; see also Tesler

ct. al. for LISP7O [T2], and Newell and Simon [IIS1].) There are many

similarities between product ion based systems and spontaneous computat ion as
we approach it here , because in both paradigms some sort of pattern matching
lies at the base of all computation invocations.

However , MICROPLANNER and product ion style languages have provided only
the framework for SC; they do not define its theoretical roles in cognitive
modeling . One of the first cognitive theories which relied heavily on SC was

• Charniak’s model of children’s story comprehension [Cl] . Charniak’s thesis was
• that understanding long segments of meaningful , connected language is

primarily a matter of planting watchers in response to clues found at one

point in the story, hoping that later on in the story some of those watchers
• will spring to-life at the correct moment to provide an interpretation for

what is happening, and do so in a way that causes interpretation to be a
fu nct ion of what has come before in the story . In other words, Charniak

• employed SC as the basis of a sow/reap, prediction/fulfillment mechanism.

• Charniak ran into an understandable combinatorial explosion of sorts;
although his idea was a good one, we feel this approach constituted a basic

• theoretical misuse (overuse at least) of spontaneous computation. Later in
- the paper , we will make an attempt to delimit — at least abstractly — the

types of presumed human mental processes for which SC seems most appropriate.

Mo re recently, Marcus (Ml] has employed the notion of SC as a model of
English grammar , where rules of syntax are formulated as procedures which run

• spontaneously whenever their run conditions are matched by some portion of the
contents of the sentence buffer of the sentence under analysis. Marcus

I
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- —5-— —•~~•-S— --• •__a •_~

______ _
~_~ • •~ ~~~~~~~~~~~~~~~~~ -S-5• •~ •• ~~~~-S~~••• • S •~•~~~~ - S • - S • • • ~~~~~~~.

5--- -5- -S -“Il
l

incorporates a notion of “packets” of SC. to control which subpopulation of
SCs it is that is allowed to react at any given moment.

Although the theoretical merit of this approach over other more
conventional control structures for grammar is not yet certain, Marcus

apparently does not experience combinatorial explosions, and is able to
express grammar in very modular and clever (if sometimes run— time obscurel)

fo rm.

Still more recently, the KRL group (Bobrow, Winograd , et al.) have

incorporated a notion of “procedural attachment” into their system which is
being designed as a base language for expressing cognitive models (BW 1] .

Procedural attachment is a specific form of spontaneous comput~’ition that lies

closer to demand—based computation than most. The MIT LISP machine [Cl] also

uses a very similar notion of procedural attachment. We will have a brief look

at this idea later on.

1.2 The CSA Theory and Spontaneous Computation

Up to this point in our own research, we have been interested in
processes which are most properl y classified as doers. The research, called
The Cotamonsense Algorithm Project , has so far been concerned mainly with the

• development of a representation for commonsense cause and effect knowledge,

and the development of an organization which permits us to store and access
large numbers of so—called CSA patterns in useful ways.

The CSA theory has been an attempt to unify some ideas about language
comprehension and problem solving; it is described in (Ri], [1(2] and (1(3].

• Because this unification has been our goal, the doers in the existing CSA
-

• model are, abstractly speaking, twofold :

(1) The plan synthesizer, which, given an agent and a goal (expressed

via the set of state and statechange predicates known to the
system) , will construct a plan (i.e. build a novel CSA pattern up
f rom its knowledge store of smaller patterns) which could be

~
• employed by the agent to accomplish the goal ; and

(2) The language interpreter, which , given a situation and an action ,
will search “backwards” through the knowledge base of CSA patterns

ilL
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

p — — 5- S-~~~-- ~~~~~~~~ — — .~

“-5- --

• • . •• ~- - • . • -•• . ,•-• -- • •• . -•• - •~~ • ••-5 ~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~ •~•~•~ ••~,• • •-~r• -~~~ ~
p
~ - -~• -

5

and arrive at a most reasonable interpretation (i.e. reason) for
the action in the situation. Interpretat ions are thus sensitive to
the context defined by the situation; because of this , we feel we
have the kernel of a reasonably powerful story compreh ender.

The central theme in these segments of the CSA research has been that
intelligent selection is the basic issue with regard to demand—based
computation. The general statement CSA is making is that doers must have good

• reasons for solving a given problem , or answering a given question in the way
they decide to do it. Our po int of view is that intelligent selection at
every step where selection is possible is a necessary (and almost sufficienti)
cornerstone of all human intelligence. We feel that selection is perhaps ~~~
key issue of demand—based computations, and that the development of

computational parad igms in which selection is made central will prov ide the
foundations for research into human learning. (RI] , (R2] and [R3] present this
point of view and give descriptions of specif ic aspects of the existing CSA

theory.

However, it was rec ed early in the CSA research that doers are only
half of the model — that SC is an equally important aspect of some CSA ideas.

It is only recently that we have gotten into the business of SC, and our
interest was initially motivated by a facet of CSA having to do with mechanism
description and simulation (RG1].

In the CSA representation , it is also possible to capture what we call

the “causal topology” of man—made devices. Causal topology means a description
of the cause and effect relationships implied by the structure, and evident in

the operat ion of a man—made device; this topology can be purely physical , or a
mixture of social and physical descriptions. We are presently able, for a
large class or mechanisms, to write a CSA pattern which captures the internal

workings of a device , express this pattern in a form suitable for

communication with the computer model, and store it in memory, integrating it

into the set of existing patterns for other mechanisms and commonsense

•
algorithm patterns used by the plan synthesizer.

Since, among others, one of our goals was to be able to use the CSA

pattern describing an arbitrary device as the basis of a mechanism simulator

- -—--S ___*___ ___4_•• • ~js~~~s~~~ - •~~~~~~ •~~ • - • ~~~-�•

____________ ____________
- •f~~~ ~~~

:-- ~~~ —.-:• -

6

(which in turn is scheduled to become the heart of a CAl “Mechanisms
Laboratory”), we were confronted with the design of a simulator. Inspired by
Sussman’s work with electronic circuit analysis using a simple SC basis [SS1J,
we adopted the following strategy for our simulator: convert the CSA pattern
which describes a mechanism to a population of SC—based procedures, each of

which models one local aspect of the flow of causality within the mechanism,

then light the fuse by presenting the population with a starting pattern , and
watch it go!

The mechanisms simulator is now running [RGIJ , and represents the f irst
fully developed application of the CSA SC component (to be described), which

itself has been under development for the past several months .

• However , s ince the initial ideas about the simulator , we have grown more

interested in SC for its own sake, and as the basis of certain classes of
inference in story comprehension (described later in the paper). Also, we have

grown more and more interested in the nature of interactions between •
-

demand—based computation and spontaneous computation , specifically those
between “watchers” and the doers in the exist ing CSA model.

The main questions are:

(a) What is the division of labor between these two computational
paradigms , and

(b) How do demand—based computations and spontaneous computation
constructively coexist and cooperate?

Henc e , the rema inder of the paper will be about a CSA—independent theory of
spontaneous computat ion , but motivated from within the specific CSA framework.

The first part is design and engineering; the second part is theory.

1.3 SC Basics

Any SC has two parts: an activation pattern and a body. The activation

pattern is a description of the situation or class of situations to which the

SC will react , i.e. spontaneously run itself. The bod y is the computation it
performs, most generally an unrestricted LISP computation (although there may

be good reasons in theory for restricting its form) .
•

~- -—--•- •-•—~--— -- •‘———~~~~~~~~ —--—--“ •-••- - • j- •• • -~••-- •~~~~~~~ - - 5 - -’ ~~—~-‘——--•—••‘-- •~,5-~•~•: •~ --S.

- , -- “ - ‘ ~~~~~~~~~~~~~~~~~~~

7

—
An SC is thus pictu&~ed as:

I,
Display 1.

To illustrate these two components, consider an SC which embodied a naive

model of earth gravity. Simply put, earth gravity tells us that, as long as we
are close to the earth , whenever an object is unsupported it will begin moving

toward the earth.. We would express the activation pattern as:

(UNSUPPORTED X) (object X is unsupported)

AND
(DISTANCE X EARTH RELSHALL) (object X and the ear th

are relatively close)

and the body as:

ASSERT : (STAT ECHANGE LOCATION X E ARTH)
(assert that X is moving toward the earth)

Dig_play 2. Earth gravity.

Of course , this example of an SC is a bit oversimplified, but it gives a

beginning insight into how and why one might employ SCs. In this case, such a
atte ich could run its a l ion ~~tt~~~ occur red

-‘•-,—

_ _ -~~~ ~~~~~~~~~~~~~~~
—

~~~~~~~~~~~~~

8

questions , and it could interrupt the demand—based prob lem solver whenever it
has lef t  an obj ect in an unsupported condition , or it could reconstruct the
prob able location of an object which had been left  unsupported , and so on.

The basic control for  an SC Is thus quite simple conceptually observe—

react. Of course , if the SC ’s activation pattern contains variables or if it
is complex in ways to be considered shortly, there are some interesting
questions about control . There are also some interesting questions about how
the SC ought to be queued before running in case there are numerous SCs who

are attempting to gain control .

1.4 Central Arenas

In the larger p icture of an entire system using this style of
coLiputation , spontaneous computation implies the ex isten ce of a possib ly large

— 
population of processes which lurk on the edge of a “central arena ” of

computation being performed by populations of doers. The metap hor is one of a

fishbowl , so we will elevate this word to the status of para—technical term ,
and Imagine that some demand—based computation is “fishbowled ” by populations

of watchers who can klbbitz , modify, augment or interrupt the main
computation.

These metaphors lead to some interesting questions:

(1) What is the nature of the central arena that SCs watch?

(2)  What are the watchers eyes made of? 
-

(3) What parts of the central arena are visible to the watchers?

(4) When should a watcher who thinks it sees something of importance
be allowed to leap into the central arena (gain control) ? and

(5) What ought a watcher be able to do, once in control?

The f i rs t  half of the remainder of the paper will describe the design and
engineering we have done to address these questions within the CSA framework.

It’ ~~~~~~~~~~_;- .• ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~•--—--• — --S



-S “—,~-~~—~ ----— . 5 ~--—- ‘-S . ‘~~~~~~~~ --S ~•_•-S-S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

9

2. ENGINEERING SPONTANEOUS COMPUTATION

2.1 Structure and Organization of SCs

2.1.1 Elementary Trigger Patterns

• - The eyes of a watcher are commonly called the watcher’s trigger pattern.

A trigger pattern is a description of some aspect of the state of a

computation , i.e., a pattern in the central arena (whatever the arena is) to

which to react. In principle , a trigger pattern could range in complexity from

a zero/one signal on a computer interrupt vector up to an instantaneous

description of every particle in the un iverse!

Since we are approaching the theory from a LISP implementation, a more

modest and natural type of trigger pattern for us is a LISP S—expression , or

generalized list structure. Since S—expressions are the medium in which all

computations are based in LISP , we will have a fairly general SC trigger

pattern definition.**

** This definition will permit access to all “user level” aspects of
LISP—based computation. However , it will provide no means by which to base SCs
upon LISP ’s background control , e.g. LISP’ s internal stacks and other
mechanisms. We will later discuss schemes in which SCs which react to this
level of computation can be expressed .

While , in principle, unrestricted LISP S—expressions would be the most

desirable subetrate for trigger patterns, we have developed a storage

technique which is most naturally applied to a mildly restricted class of LISP

S—expressions and will provide nearly the same expressive power. This is the

class of nested n—tuples, where a nested n—tup le <nn> is defined as:

1.~

I 

—‘ -‘ - - — 5- ’ ’  —



~~~: ~~r~~~~~~~ rz ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 

5-

~~~~
”’

~~~~~~~~~~~-~~
- - -

~~~~~~ 
- —-----—- -—--

~~~~~~~~~~

10

<nn> := <constant> <variable> I (<nn> ... <nn>)
<constant> := <LISP atom>

<variable> :~ —<LISP atom> (read as a hyphen sign)

Display 3. Definition of a nested n—tuple.

Nested n—tup les built up in this fashion (and then into more powerful

constructions) will permit us to express patterns which we can regard as

associative , in the sense that they will have the potential for “matching”, or
“triggering on” (to be defined) patterns of activity In the central arena..

To illustrate , suppose we wish to construct a relatively simple

spontaneous computation whose eye , or trigger pattern would react to arena

patterns of the form: “(wake me up when) Someone knows that John loves

someone .” Then we might write:

• (KNOWS —X (LOVES JOHN -Y)) **

Display 4. Someone knows that John loves someone.

as this SC’s trigger pattern. Here, by our convention (there are many other

reasonable conventions), —x is a variable, —Y is a variable, and the rest of
the pattern is constant.

** The part icular choice of representation (I .e. predicates and form) is
of course up to the theorist ; we are interested here mainly in the structure
of ti-i c patterns he employs.

-
•

The interpretation of the pattern of Display 4 would be: activate the

body of the SC to which this pattern is attached as trigger pattern whenever a

pattern which matches this pattern occurs in the central arena, communicating

to the body the identities of the symbols which were bound to the variables —X

It and —Y by the match process. For example , the pattern

- ‘ ~~~~~~~~-~~~~~~~~~~~~~~~ -- - -S.~~~~~~~ -~~~~~~~~~~~~- -5- - - —-- -
~~~~



_•
~~~~~~~ •‘~~~~~~~~~~~~~~~~~~~~~ -•-— - — — -_-•-.---—-- ~~

11

(INOWS MARY (LOVES JOHN RITA))

Display 5. A fac t which matches the pattern of Display 4..

would match this pattern, setting —x to MARY , —Y to RITA .

Now, there are some new questions:

I
(1) What is the interpretation of variables?

(2) What kind s of expressive power built up from this simple

definition would be desirable in trigger patterns?

(3) How ought the system to store a trigger pattern so that it can be
accessed associat ivel y in an efficient manner f rom among a large

population of SCs?

— 2 .1 .2 Trigger Pattern Variables

A variable in an SC trigger pattern is essentially a stand—in for a
-

- “don’t—care ’s part of the trigger pattern . However , since variables can be
- I regarded as unique ind ividuals (i.e., by using a different name for each

variable In the pattern) , they can serve also to restrict the class of objects

to wh ich they may be bound , and hence the class of arena patterns to which the
trigger will react.

The simplest convention for variable restriction is that variables with

the same name must be bound to the same object when a match to the pattern is

being attempted . For example , if we choose to limit the applicability of the

trigger pattern of Display 4 to only those cases where the person who KNOWs is
-~

• the same person as the person John LOVEs , we might express this as:
I —

•1

(KNOWS —X (LOVES JO~~ -X))

-
• Display 6.

I ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ .~- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~ —~~~~~~~~~~~~~~~~~~ - - - _____________, -

12

Of course , if we choose this convention , either the pattern matcher or the

inherent organization of the trigger pattern associat ive access mechanism (or

both) must be able to deal with this type of restriction.

But this kind of restriction , which we will call variable identiti
restriction, can actually be regarded as a special case of a more powerful
scheme which would allow us to attach arbitrary restrictions on a variable.
Such restrictions could be denoted , e.g., by the form:

(<variable> : <restriction> ... <restriction>)

Display 7. Hypothetical variable restriction syntax.

where each <restriction> would contain references to <variable> . Then , for

example , we could further constrain the trigger pattern about loving in
Display ô to read : “Someone who hates John knows that John loves his (the

hate r ’s) sister ” by writing :

(KNOWS (—X : (HATES —x JOHN))

(LOVES JOHN (—Y : (SISTER—OF —Y — X))))

L Display 8.

Of course , our syntax would need some refining (e.g. to clarify the status of
(HATES —X JOHN), indicating that it is a query to the system database , rather
than a general LISP computation , and so fo r th) .

Variable identity restriction is a case of this mo re general scheme ,

which we will call variable semantic restriction, because writing —X in more
than one place is logically equivalent to using variables of d i f ferent names ,
but qualifying them so that they must all be lisp EQUAL :1- ~~~~~~~~~~

_ _ _

kJ~ j
-S -

~~~~~



-5- ’- ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~—- ——--S
--5— - .• ‘5- ~~~~ -5 —,---~~~~ -~~~~‘~~~~~~~~~—-r

13

(LOVES —X -X) <—> (LOVES —X (—Y : (EQUAL —Y —X))

Display 9. Identity vs. semantic restriction.

(Th is is assuming that —X will receive a b ind ing prior to —Y in the match

process).

However , there is another logically equivalent way to approach variable —

semantic restrictions which will become evident when we consider the

extensions to the basic trigger facility in the next section; so we will not

pursue the notion fur ther  here .

2.1.3 Complex Trigger Patterns

In PLANNER and CONNIVER , trigger patterns are kept simple by permitting

no more than one logical part, and by adopting only forms of the variable

identity restriction technique. Because of this , in MICROPLANNER and

CONNIVER , a trigger pattern will provide an SC with only superficial evidence

that the SC is applicable to an arena situation. Any detailed applicability

tests must be performed as part of the SC’s body, evert though they are

logically part of the trigger condition.

While this approach provides a powerful enough basis for general SC, it

would be more desirable to incorporate increased expressive power in the

r trigger. Doing so will amount to moving into the trigger (where it belongs)
computation which would otherwise have to be performed by the body of the SC
after  becoming active on the basis of a superficial trigger condition.

In one sense , where the triggering intelligence resides — in the trigger

pattern itself , or in the SC’s body as a set of additional preconditions to be

tested prior to the actual running of the logic of the bod y proper — is simply

a matter of style. However , there are two arguments in f avor of moving more

of the triggering intelligence into the trigger pattern :

( 1) Conceptually, the trigger and the body have nothing to do with

each other , except for the passing of variable bindings from the

-- - —- ‘_ ~~~ —•-5--~---- - _5-__ •__•___-_~~~~~.__•_ ’___S —~---~~~~~—~~. -.~~•



—-—~~~~
-----— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -S. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — —5-

14 -

trigger to the body at invocation t ime . If it ever becomes of theoretical

interest to have the system manipulate its own SCs’ trigger patterns and
bod ies ( say , for “learn ing”) ,  keeping these two components totally distinct

has obvious advant ages.

(2) Computationally, when a population of simple , PLANNER—like
watchers becomes large and many watchers appear to be relevant to

the current situation in the central arena , it may be the case
that many of them are not actually ready to run , but are

requesting to run only to make fur ther  relevance tests. From such
tests , they might discover themselves to be irrelevant af ter  all.

On the other hand , other SCs migh t actually be ready to run and

perform some useful computation. This poses a problem to the

higher level arbiters in the system who are trying to decide whom
to run , and it also presents potential complications to some

invocation processes which split trigger patterns apart, as
de-scribed later in the paper.

For these reasons, we have adopted the view that it is desirable to move

intelligence into the trigger pattern, with the intent of providing more total

conceptual and computational isolation between the trigger and the body.

Let us now consider the types of expressive power we will and will not
need in trigger patterns.

2.1.3.1 Ellipsis: Too Costly

There , are many conceivable ways to increase the expressive power of SC

triggers. One obv ious extension would be to allow for ellipsis in the

patterns , regarding them more as strings than as list structures. For

example , it might be convenient to write trigger patterns such as:

(LOVES ...)
and (. . . JOHN . .. MARY . ..)

Display 10.

mean ing “match anything that starts with the constan t LOVE S” and “match

-— —— —~~~~ —~~~~~— 
p_~ - —— S— - —  —



~~‘ 5-5-5-’5-” 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~rz~’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~-~ - - - ~~~~ - •  --——--—5---.—-- — . 5-

’,

15

anything that contains the symbols JOHN and MARY in it (in that order)”,
respectively.

While ellipsis might be desirable in principle , we feel that it incurs
more problems in practice than it is worth in the context of a LISP
environment . For one thing, since ellipses can represent zero or more
unspecified obj ects , accomodat ing ellipsis introduces a combinatorial element
into what is otherwise a straightforward (linear) pattern matcher .

Beyond this , if we are writing trigger patterns within an environment

where some theory of representation is providing a general semantic framework
for expressing knowledge , then the utility of ellipsis is not nearly so great

as it is in unrestricted string environments. For example, if we regard LOVES
as a predicate, with an intentional semantics (as well as an extensional

semantics) of its own rather that simply as a string of f ive symbols, and if
we adhere to a particular syntax for using it (say , Cambridge Polish
notation) , then ellipsis will often stand for something which could have been

specified more succinctly without ellipsis anyway , e.g.:

(LOVE S ...,) <—> (LOVES —X —Y)

Display 11. Ellipsis in a system with intentional semantics.

So, although there are clearly some cases where it would be convenient to

~ I
have ellipsis, we have chosen to reject ellipsis as an extension to the
trigger pattern expressive power.

2.1.3.2 Unordered Sets: Not ~~~~~ Problem

Another possible extension would be to provide for the expression and

matching of unordered sets in the trigger. Although , wherever a predicate with

intensional semantics is involved we can use a positional structure, there are
cases where we may wish to deal with sets of things whose order is truly of no

consequence. Symmetric predicates and sets whose membership can be

anticipated , but whose order cannot , are cases in point . For example , we might

wish to write a trigger pattern which would be sensitive to the notion “MU

- - - - 5 - —-—-—.————-S5
— -— 5--

- —-5— — - — - - 5 - 5-—_ • 5- 5-.- - ‘ - 5 - - — - 5 - - - ‘—-S - —- ------—--.—- - -- -5-- - . .- - -• - ’--—-S— ----- - .-•- . -

16

is a brother of John” , and it would be convenient to have to write only:

(BROTHER S BILL JOHN)

Display 12. Symmetric predicates.

and let some other part of the system worry about the symmetric nature of this

predicate. Or perhaps we would like to react to any pattern in which Mary sees

John , Bill and Pete all at the same time :

(SEE MARY (JOHN BILL PETE))

Display 13. Unordered sets.

again, deferring the problems in matching the unordered set (JO HN BILL PETE)

with some particular ordering to some other part of the system.

The associat ive access structure for SC trigger patterns we have
developed and will describe will not (conveniently) tolerate this type of

generalization. However , we believe we do not lose any significant expressive
powe r , since , once again , it is usually possible to reformulate unordered set

-
• - matching within an ordered framework:

•

- -

(SEES MARY (JOHN BILL PETE))

(SEES MARY —X) and (EQUAL—SETS —X ‘(JOHN BILL PETE))

‘
-5

Display 14.

where we attach (still in the trigger pattern) the additional restriction on

—X that it match a particular unordered set. The unordered set match would be
carried out by calling a special LISP function , say EQUAL—SETS , to accomplish

the match.

-5- 5- •- .~~~~~~~~ S5-• 5- —— _-~~ -- ~~~ -S —~~~~~~~~—~~~~~~~~~~~~~~ —5- .S —--

- ~~ ~~~~~~~~~~~~~~~~~~~ ‘

17

Nov that we have described two things we have not done , we will describe i
what we have done .

2.1.3.3 What We Did: Complex CM Trigger Patterns

In addition to some of the generalizations suggested by abstract pattern

matching needs , we will want SC trigger patterns to be of sufficient

expressive power for the types of theoretical uses to which we will wish to

put SCs. Most important in this respect will be a flexibility in describing .

— subtle or complex situations; if triggers are too coarse, then we run the risk
of having too many SCs wake up in any given situation. Therefore , it will be

essential that the SC trigger pattern conventions hamper the theorist as -

little as possible when the need arises to express trigger patterns for

matching complex goings—on in the central arena.

Everything we want in an SC trigger pattern seems to converge on one

rather simple theme: allow the trigger pattern to be composed of nuuerous

logical par ts, connected via logical predicates. Allow each logical part to

be either

(a) a nested n—tup le pattern which will represen t an associative

-
• component of the complex trigger pattern, or

(b) an arbitrary restriction, formulated as a general LISP function -

call.

These two components will fill both the need to react spontaneously (thi

structural pattern part), and the need to perform more subtle checking prior

to the actual invocation of the associated SC.

We will call any general LISP function call which exists within a trigge

pattern a computable of the trigger pattern. We will want the associativs

components of a trigger pattern to become indexed into the system—wide contro~
f or spontaneous computations, whereas we will want the computables simply ts~
be retained in the pattern to be used at associate—time , but not indexed tnt -

the SC control.

<I> whi

c1

- -5-
~~~~

-
~~~~~~~

-
~~
.- -. — — _--S5-—~~ --•- - — 5---.-—-5—

~
.- -,

— -—

18

<tp> :~ assoc> I <computable> I (complex>

<assoc> :— (+ <effort> <nn>)
(comp utable :— <LISP—S—expression>
<complex> :— (AND ~tp> ... (tp>)

(OR <tp> ... <tp)’)

I (ANY <tp> ... (tp>)

Display 15. The CM complex trigger pattern syntax.

where <n n> is a nested n—t up le as defined in Display 3, and where it is
understood that <LISP—S—exprt ssion> includes all forms except those covered by

<assoc> and <complex> forms .

The semantics of this defin~ tion will be as follows : whenever we wish to
designate an associative part of a complex trigger pattern (i.e., one which
will react to activity in the central arena, and which will come te be indexed
into the associative SC access mechanisms to be described), we will encase it
with the special marker “+“, as in:

(+ 1 (LOVES —X MARY))

Display 16. A complex trigger associative component.

Alternatively, any portions of the trigger pattern not so encased will be

interpreted as LISP computables.

Complex patterns of associative parts and computable parts may be built
from the relations AND , OR and ANY. The semantics of an AND condition are that
all its parts must be bound in a consistent way in order f or the AND relation
to be true . In an OR relation, at least one of the OR components must be true,
and any variables which come to be bound will reflect the b indings of the
first component of the OR found to be true . The ANY relation provides a way of
forcing as many of the ANY components as possible to be sought (and , hence , as
many bindings as possible to be made) ; ANY relations are always logically

I A5- . - - ’~~~~~..t - 5 - s~~~~, 5- ---5- -S ‘5- • 5-~~~~~~~_~-55-_-55_-5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~ - A A ~ 5- - -~~ - —- _
— 5--’


~~~~~~~~~~~~~~~ - 
- ‘  

‘5- .5-5- -_~~~~~~~~~~~~__  - . — - - • -
~~~~

19

TRUE . Many other useful relations are imaginable, but we have limited the

present system to these three.

As it will turn out, (+ <effort> <nn>) forms will need to interface with

both the SC associat ive control and with the system’s deductive and database

components (in a fashion to be described). Therefore, this form will also
serve as a system—wide query form, i.e., entry syntax into the deduct ive -i
component of the system. The <effor t> f ield, an S—expression that will

evaluate to an integer , will denote the max imum acceptable level of effort to

be expended if the form were to be regarded as a database query (i.e.

deduction). “Effor t” is defined as the number of raw database fetches wade.

Of ten, it will be convenient to include in a complex trigger pattern

deduct ive queries which are identical to + forms in all respects except that

they are not to be treated as associative components of the trigger pattern.

That is, often we will want to express conditions that must be true before the

SCs computation can be activated, but which themselves cannot initiate the

running of the SC directly, i.e. trigger it. We adopt the convention of

encasing such forms in “—“ signs:

(— <effort> <nn>)

Display 17. Hon—associative trigger conditions.

Applying this complex trigger syntax to expressing the pattern we
considered a while back as Display 8, “Someone who hates John knows that John

loves his (the hater’s) sister”, we can now wr ite:

(AND (+ 1 (KNOWS —X (LOVES JOHN — Y)))

(+ 1 (RATES —X JOHN))
--

-
-

(+ 1 (SISTER—OF —Y — X)))

Display 18.

————‘-5—’ 5-~~~~~~5- ”~~ ‘5- ’ ’ 5 - 5 - - aas~~~~~~.~~~~~~~~~~~~~~~~~ - - - ‘ 5-~~~~~~~~~~~~~~~~~~ _•~~~~~ -5— -‘—-5— - -


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

20

Here , we have written a trigger pattern all of whose parts are associative.

This will mean that the pattern will “nibble” whenever any one of its

components is seen in the central arena. The l’s in the <ef fo r t>  field will

indicate that , in the process of attempting to verify that all parts of this
pattern are true after  any one part has nibbled , only one unit of e f for t  is to

be expended for each additional part . (This will amount to restricting the

deduc t ive componen t of the system to one database fetch apiece.)

Note that we now have a vehicle for  expr essing general f orms of var iable
semantic restrictions: we simply factor out the restrictions and include them
as othe r AND conditions in the pattern.

If we wished to have the trigger of Display 18 react only to the
“pr imary ” idea, namely, “Someone knows that John loves someone” , then we could

simply make the second and third components non—associat ive :

(AND (+ 1 (KN OWS —X (LOVES JOHN — Y ) ) )

(— 1 (RATES —X JOHN ))

(— I (SISTER—OF —Y —X)))

Display 19.

To illustrate a pattern which includes computables , we m ight att empt to

capture the notion of “unrequited love with a minor ” ( 1)  as:

(AND (+ 1 (LOVES —X -Y))
(+ 1 (NOT LOVES —Y —X ) ) **
(- 1 (ACE —X —AGEX) )
(— 1 (AGE —Y —AGEY) )

(#GR EATERP —AGEX #18)
(#LESSP —AGEY # 18))

Display 20. A complex trigger pattern with computables.

L. 

--‘—5-—- -~~~~ ~-S-5~~~~~~ •~~~~~~•5-•_ _, ~~~~~~~-S~~’- -- - - ----- ~~~~~~~~~~~~



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
,
~
- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ___________

~

- - - -S
—

~~~

21

** Nega tion in the CM system is handled as shown here , i.e., in patterns
themselves rather than in the structures which relate patterns. A future paper
will describe the deductive components of the CM system in more detail.

Here, we have made the notion of unrequited love “central” by specifying only

the love/not—love parts of the pattern as associative. The ages of the parties

involved are first determined by non—associative database queries, then
compared against the integer #18 ** via the computables.

** Because of the way LISP stores them, we cannot index numeric atoms in
the ways required by our storage structures. For this reason , we pref ix
numbers with a # to make them non—numeric . We have a parallel set of
arithmetic functions for these forms.

We have described most of the important points of SC trigger patterns as
they are now defined and implemented in the CM system, and feel that we have

at least the kernel of a very expressive system. Since we will see more
examples of trigger patterns throughout the paper , we will not dwell on their

form here , but instead now turn to a despription of the associative access
mechanism which is built around this style of complex trigger patterns.

The issues are:

(1) How are the associat ive components of complex trigger patterns

indexed into a central SC control and access mechanisms?

— (2) What is the procedure for determining whether a trigger pattern

~ 
j has been matched in its entirety (and hence, whose associated SC

bod y ought to be Invoked)?

(3) How ought SCs whose patterns are only partially satisfied to be

handled?

(4) What are the interesting theoretical uses to which partially

- - activated SC trigger patterns can be put?

For the remainder of Part I, we will assume that the trigger pattern



~~~~~~.w--: ~~~~~
’___

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ - - 
- 

---- - -

22

definition we have given will be at least necessary for any reasonable SC
system , and disregard as best as possible all its shortcomings. This will
enable us to investigate some interesting engineering and theoretical

questions within a specific framework.

2.1.4 SC Associative Access Paradigm

In any given app lication of spontaneous computat ion , we would generally
expect there to be large populations of SCs , each SC having the type of

complex trigger pattern we have just  described . The question therefore is:
how ought such populations of trigger patterns to be organized in a system

that will need to awaken them associat ively ?

An SC access requirement is fundamentally d i f ferent  from the access

requirement of a database/deductive mechanism. Typically, a

database/deductive component is confronted with a pattern which possibly

contains some variables. The general type of response from a database/

deductive component is a list of ways to fill all the variable positions to

make the query pattern “true”, i.e. to make it correspond with fully constant

- 

¶ patterns in the data base, or with deduced , but still fully constant patterns:

accesses

<pattern with variables> > list of possible ways

to satisf y the patte rn

Display 21. Database access paradigm.

For example, if we ask the question “Who are lovers?”:

(LOVES —X —Y) ?

Display 22.

we would expect a response having the general form : “Facts Gl23 and G32

______________________ 

-a 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - 5 —

_____________ ~~~
- -- —----5--- - ———‘-S-S --5—-——----- - - - - -~

~1

23

indicate , respectively, that (LOVE S JOHN MARY) and (LOVES SUE BILL) , so I will
return the value G123 with —X—JOHN , —Y—MARY , and the value G32 with —X— SUE and
—Y— BILL . ”

The SC component on the other hand will be reacting to patterns which are

generally fully constant. It will attempt to locate some subset of the
population of trigger patterns (containing variables) which “cover” , or match

a given ful ly constant pattern. If we cal l this subset which associates with a
given constant stimulus the “nibblers” , the SC paradigm is:

triggers
<ful ly constant n—tup le> ————————> collection of nibblers

Display 23. SC access paradigm.

-‘ Although it is possible to use one technique for both database and SC

access, it would appear to be more efficient to separate these functions and

to engineer the SC component with a technology different from the standard

database technologies. (See e.g. McDermott (M21 for a good discussion of

database organization). Because of this, we have developed a special

technique for SC trigger pattern associative access which Is distinct from the

standard database access techniques.

2.1.5 Trigger Trees

The organization of CSA SC trigger patterns is based upon a s t ructure we

call a tr igget tree (sometimes abbreviated TT) . A trigger tree is a central
structure into which all the associative components of all SC trigger patterns

in a given population of SCs can be knit . It will then become possible to

speak in terms of “populations of SCs”, meaning a tree of triggers, and in

terms of “plant ing” the associat ive components of an SC’ s complex trigger in
some trigger tree.

“Planting” the associative parts of a complex SC trigger pattern, C, will

involve :

-- ‘— — - -- - ‘— - - - - - - - - ‘ —--— -~~~~~~~~~~~~~~ -- ‘ - —~~~~‘ — - - - -S- -’~~~~~~~

“T~~~~
’5-

~~~~~~~~~ ~~~~~
‘
~~~~~~~~~~~

‘ 5 -’ 2~~~~-~~~~~
-
~-—

24

(1) fragmenting the complex pattern , C, extracting the list of all its

associative components

(2) storing each associative component of C in a specified trigger

tree

(3) associating with each associative component of C so planted , say

A , list, L(A) , of other components of C which, together with A,

would cause C to be entirely satisfied .

We will now describe these steps, and the structure of trigger trees.

All the activities about to be described are set in ‘notion in the CSA system

by calling the function $PLANT:

($PLAN T <tp> <sc—body> <tt>)

Display 24. The CSA SC trigger planting function.

i.e. “plant in trigger tree <tt> an SC whose trigger pattern is <tp> and whose

body is <sc—body>.’ ** We will describe $PLANT in more detail later.

** We have decided to include as append ices the LISP code which
implements the ideas being presented . One could argue about the usefulness of
such a decision , since the contribution of any computer system lies not in Its
code , but rather in what it suggests in the theory. However, much of our
programming has been at a level of detail that ought not to have to be
repeated by people who are interested in using ideas we describe.

2.1.5.1 Fragmentation

In planting, the complex trigger pattern , composed from AND , OR and ANY
relations, computables and associative parts, must first be decomposed into

—
its parts. The decomposition must be performed in a way that couples to each

associative component of the pattern a list, L(A) , of other parts of the
pattern such that if A union L(A) were satisfied , the entire trigger pattern

would be satisfied , i.e. fully triggered. This will permit the pattern to be

L “entered” via of the associative components , since each associative

- - - - -‘ - - - -‘ -—--S ——- -~~~ -S

‘

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - --.---—-— ---——--——
~~~~~~~~~- -

5-

~~~~~
” : ‘: -~

25

component will be p lanted in an associative access trigger tree and will have
a knowledge of which other components of the complex trigger constitute its
L(A) . Whenever a stimulus causes A to associate , this L(A) will be called up
in a more goal—directed mode that tries to determine whether or not A union
L(A) has been satisfied.

We will define polling to be that process which, upon some associative

component , A , being triggered , tests the remaining pattern components , L(A) .
Polling is of considerable theoretical interest and will be discussed in more

detail later.

The CM function which, given a trigger pattern <tp> , performs this
fragmentation, is called $FRAGMENT and is called initially by ($F RACMENT <tp>

NIL). $FRAGMENT accepts a complex trigger pattern as defined in Display 15
and returns a list of the form:

( ( <al> <L(a l ) >  )
( <a2 <L(a2) >

( <an> . <L(an)> ) )

Display 25. Fragmentation results.

where <al> is the f i r s t  associative component of the complex pattern , <L(a l ) >
is its associated L ( a l ) ,  and so for th .

The algorithm is recursive and “understands” the semantics of AND , OR and

ANY so that it produces the minimum L(A) for  each associative component A in

:- 
-. 

the complex trigger. For example , if $FRAGMENT is called with the trigger —

- 

- pattern

L



________ ___________ ‘
~~~~~~~ -

.
~~~~~~~~ 

‘ - 
~~~~~~~~~~~~~~~~~~ -

26

(OR (AND (+ i. (i.OVES —X JOHN))

(OR (+ 1 (LOVES —X BILL))

(+ 1 (LOVES PETE —X))))

(+ 1 (N OT LOVE S —X J A C I)))

Display 26.

it will return the list:

(((+ 1 (LOVES —X JOHN)) . i.e. al -

(OR (+ 1 (LOVES —X BILL)) L(al)

(-F 1 (LOVES PETE —X))))

((+ 1 (LOVES —X BILL)) . a2
-

1
(-F 1 (LOVES —X JOHN))) L(a2)

((+ 1 (LOVES PETE —X)) . a3
(+ I (LOVES —X JOHN))) L(a3)

((-F 1 (NOT LOVES —X JACK)) . a4

N I L)) L(a4)

Display 27. An example fragmentation.

where multiple references to any one subcomponent of <tp> are preserved as

LISP EQ references. Each associative part on the list so produced will then

be planted the trigger tree specified in the original call to $PLANT.

Planting an associative part, A, will give rise to a unique path in the

trigger tree. At the terminal node of this path we will store a reference to

the SC of whose complex trigger pattern A is a part , and attach to this

reference L(A) to identif y those parts of the original trigger pattern which

‘nust be polled in order for the complete pattern to be satisfied in case the

f complex tr igger is entered via A.

tie turn now to the s tructure of a trigger tree .

--- — - - -5- - -- -’ -— -— - -5 ----- - -----5— - - -- - -- --— — - - --——- - --S -‘ -
~~~~~~~~~~~~ ~~~2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 
‘ :, ‘ 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘ T :~ ~~~~~~~~~~~~~~~~ ‘— -S ~~~~~~~~~~~~~~~~~~~~ --S ‘

t

‘1

27

2.1.5.2 Trigger Tree Structure

Since triggers arc associative and , given any fully constant nested

n—tuple as stimulus, we want to access all relevant triggers, it would be

desirable to have the triggers share as much common storage and structure as

possible . This wil l make it more efficient to access relevant triggers in

“parallel” while also conserving space .

A tree is a natural for these purposes (see Knuth [K 1J , e .g.) . Hence ,
our thinking developed along the line of a tree structure, in which each path

from the root of the tree to a terminal node corresponds uniquely to some

associative component of some complex trigger. Associative access in this

type of structure amounts to a breadth—first traversal of the entire tree,
-

dropping from consideration any paths which fail to match at some po int . For

any stimulus pattern , P , a traversal of the tree will yield either NIL (no SC

associative components nibble at P) , or a list of tree terminal nodes

represent ing the subset of the tree ’s associat ive patterns that f i re in -
response to P.

The structure of a non—terminal node , <tt—nt— node> , in a trigger tree is:

(terminal nodes will be described shortly)

<tt—nt—node> :— (<constants> <variables> <complexes> . <parent>)

<constants> :— NIL (<conat—alt> ... <const—alt>)

<const—alt> :— (<atom> . <tt—node>)

<variables> : NIL I (‘tree—variable> <var—alt> ... <var—alt>)
<var—alt> :— (<var—restriction> . <tt—node>)

<var—restriction> :— <tree—var> FREE
<tree—var> :— —X <path>

<complexes> : NIL I (<complex—alt> ... <complex—alt>)
‘. <complex—alt> :— (<length> . <tt—node>)

<parent> :- <tt—node>

Display 28. Trigger tree non—terminal node syntax.

- - T 1 :::i ~i~::~::i:: ~:.: ::i :~~~~~~

Sc (an atom

- - ~~~~~~~~~~~~~~ -
~~~

-
~~~~~

-,
~~~~~

- -,- — - - -

28

prefixed by a hyphen sign in our convention), <path> is a sequence of integers

uniquely identifying the position (to be defined ) of the non—terminal node in
the t ree , and <tt—node> is any trigger tree node. <parent> provides an upward

bac klink from each node to its parent , with the parent of the root node being
NIL. Each trigger tree node thus requires three CONS nodes at a minimum :

PARENT

CONSTANTS VARIABLES COtPLEXES

Display 29. Trigger tree non—terminal node’ .

Besides the parent link, which is used only in the process of removing an

associative pattern from a trigger tree, each non—terminal node consists of

three parts:

( 1) constants ( indexed by themselves)

- - (2) variables (indexed by identity restrictions)

(3) complexes (indexed by length)

Each path from the root to a terminal node in the tree will correspond to a

left—to—right , depth— first traversal of some associative pattern (a nested

n—tuple, possibly containing variables). Each node on any given path in the

tree will therefore correspond to some position within the associative pattern

which that path represents.

There will be two modes of access for trigger trees:

(1) PLANT MODE: given an associative pattern , find (or create) the

path in the pattern tree which represents this trigger, and

(2) ASSOCIATE MODE: given a fully constant stimulus, f ind all paths to
terminal nodes which satisfy this stimulus, i.e. associatively

_ 
~~~~~~~ -S---~~~~--- - -S - — -S  - -


—--5-—— —
— ‘-5 — --5” ‘— ----- —— —-S ‘--S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ , ‘_-u1_____~j ,w_u 
~~~~-~~~~~~~~~~ aLJ------.~~~- ~~

-
~~~~- - - __

~~:.___4 I’~~~
_ -~~~ __ _ _____ -

I

29
n

locate all the nibblers.

We visualize each non—terminal trigger tree node graphically as:

CONSTANT$,— 1 ~~~~OMPLEJ(ES

I — — VARIABLES
t

A A A
Display 30. Non—terminal node structure.

A <path> to item X in an associative pattern (nested n—tuple) P is

defined as the list of “go to position i and descend” operations that would be -

required in order to move from the entry node of the pattern to X. Rather

than define it formally, we will simply illustrate a path. If the pattern P

is:

(KNOWS JOHN (LOVE S MARY (COUSIN PETE )))

Display 31.

~ I ~ then the path to the atom COUSIN in P is (3 3 1), i.e., go to the third

position at the top level , descend , go to the third position at that level,
descend , then go to the first position at that level. By convention, we store
such paths as decimal integers; this restricts us to nested n—tuples of

maximum length about 9 and depth about 10, because of the way integers are

stored on the machine. (This is a trivial aspect of the implementation which
could be changed easily.)

- ~~~~~~~~~~ Sz~~~~z ,.~—-- &a- - -- -



_______ 

, - S
~~~

—-5- -
~

----,-—

~~~~~~~ 
- — -‘

30

2.1.5.3 Planting Associative Patterns

- ‘ 
- 

Suppose that we wish now to plant the (in this case fully constant)

associative pattern, P, of Display 31 in a trigger tree, TT. Starting at the

- 

- root of TT (if there is no root , or no next node, one will always be created
in PLAN T mode),  we will descend into TT as we move from left to right,
depth—first in P. As a preview, let us consider what TT would look like after

the entire plant, assuming TT then contained only this one pattern:

U

NIL NIL /
3 /

/ —
— ~

‘ I % I j
I / I

- 

- 

NIL NIL  / M~RYJ 
NIL NIL

H / ~~~~~~~
-~~~ ~ I ~ I

H I
J N I L  • NIL NIL NILJOHNI / 2

L / - —

- 

NIL NIL 
~~~~~~~~~~~ 

/

COUSIN~~
NIL NIL

/ , ‘-5%

-5-
1

~ / /ri ’ o
~ NIL NIV NIL NIL

LOVES PETE

Display 32.

This structure arises as follows: The pattern , being complex and of
length 3 at the top level (i.e. (KNOWS JOHN *)), comes to be stored in the

complex f ield of the roo t node of TT , grouped with any other existing patterns
of length 3. Descending into P, the first element of the top level list is

-

~~~~~~~~ ‘ — -5-- -~~~~—-- - - -_ _
‘—- _ _ _ _

~~~~~~~~~~~

- —

~~~~

— - - - —‘ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _



— . ~-..-—-- ~ 
.-_----- —

~~- ~
-

‘--5”

31

KNOWS, a constant. KNOWS therefore gives rise to a successor Out of the second

node of TT f r om within the constants field.

Hoving across to the second element at the top level of P, another

constant , JOHN, is encountered , giving rise to another node similar to the one

for KNOWS. Moving to the third element of P and descending one node in the

tree, a complex , (LOVES ...), is encoun tered , causing a successor f r om the

third node of the trigger tree to be sprouted via the complexes field (again,

subindexed by its length, 3). Descending, the first element of this nested

n—tuple, LOVE S, gives rise to another node with an edge leading out of its

constants field.

loving to the second and third elements of the nested list causes the

remainder of the tree to be built up in an analogous manner. Thus, going f r om
a node to its successor in TT corresponds to moving right one element in P ,

and descending into the new element in case it is complex.

A variable at position X in the pattern P being stored in TT will cause

an arc to be created out of the variables field of the node in TT

corresponding to position X in P., Since the trigger tree is serving to unify

many patterns into one structure in which common initial paths are shared, it

is necessary to maintain a uniform variable naming convention.

To ensure a uniform naming convention, a~ a pattern is stored, each of

its variables is mapped into a variable of a canonical name that is derived

from its position in the pattern being stored. A position is described by a

<path> , as previously defined.

In our convention , if variable V occurs at position R in P , V will be

known within the trigger tree as the variable whose print name is “—X”

• concatenated with the path denoting R.

For example , it the pattern to be stored in the tree is

(KNOWS —X (LOVES —Y —Z) )

Display 33. 

‘—--—-5- —--c ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ -5 - - - ‘ - - - - - -



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  ‘

32

then within the tree the pattern will be known as:

(KNOWS —X2 (LOVES —X32 —X33))

Display 34. Canonical variable naming.

At the terminal node of the tree which corresponds to this pattern , variable

mapping information of the form “—X2 is actually —X, —X32 is actually —Y, —X33

is actually —Z ” will be stored so that when the pattern is associatively

accessed by a tree traversal in response to some stimulus , original variable

names may be reconstructed and tree variable bindings transferred to the

variables as they are known to the SC of which the tree pattern is a part.

Suppose now that we were to store the pattern of Display 34 with three

variables in the trigger tree we have begun to construct in Display 32. Then,

the new, augmented tree would be:

- -



I~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

33

NIL N I L

,

~~~~

/
,~~ • %

/ / I ~~~

/ ~
.‘(I “

• ‘I’ NIL NIL I T NIL NILKN~~SJ /
LovEs

J
— %

/

NIL x3~~ NIL

NIL NIL
‘c

.L_-
.”

~~~~~ 

NIL X33? NIL

AS IN DISPLAY 32 FREE~~

Display 35. Trigger tree TT, now containing two associative patterns.

Now we have introduced some variables into TT. When the variables field
of a trigger tree node first becomes non—NIL, the var iables f ield of that node
blossoms from NIL to the form:

( <tree—var> <var—alt> ... <var—alt> )

D ispla.
~~~~~ Trigger tree node variable field syntax.

where <tree—var> is the variable of canonical name corresponding to the
pattern position the node in the trigger tree represents. Storing the tree

variable in explicit fo rm will make it a simple matter to bind this variable

dur ing associative tree accesses.

Trigger trees will permit us to perform variable identity restrictions

I

‘-5 - -

—~~~~
•—••— .—---———-— ____________

—~~~ ~~~x~~--~ —
-——---

I
34

(as defined earlier) in a very natural way. Associated with each arc,

<var—alt> , out of the variables field of a node in the trigger tree is an

identity rest r iction (denoted as <var—restriction> in the syntax of Display

28) . Such a restriction has the form:

<var—alt> :— (<var—restriction> . <tt—node>)
-

-
<var—restriction> :— <tree—var> I FREE

Display 37. Variable identity restriction syntax.

and has the following interpretation. At tree application time (i.e. the time

at which associative patterns are being matched against some stimulus), the

variable’s arc may be followed only if the position in P being currently

matched (i.e. to which the node corresponds) is LISP EQ to the existing

binding of the tree variable named by <tree—var> in the <var—restriction>. By

convention, if the variable has no restriction (i.e. it occurs only once in P,

or this is the first occurrence of it in the left—right , depth—first traversal

on P) , instead of a reference to another tree variable , we include as the

<var—restriction> field of <var—alt> the distinguished atom FREE.

This syntax will permit us to discriminate triggers on the basis of

variable identi ty in addition to the structural and constant information

within the pattern. For example, if we now augment the trigger tree, TT , we

have been building with a third , very similar pattern:

(KNOWS —X (LOVES —Y — X))

Displ !y 38.

which becomes:

______________________ - “‘ - ~~~~~~~~ ~~ ‘ ‘-S ~~~~~ - — - ‘

35

(KNOWS —X2 (LOVES —X3 2 —X33))

such that —X33 = —X2

Display 39.

within the tree, the new tree will be:

U

NIL N1L~~~~~~
3

NIL NIL i N IL NIL
KNOWS LOVES

, ~. _ %.

N IL
/

NIL
~
X321 NIL

/ j FREE I

/ ~~~~~~~~~~~~~~~~
NODE K

NIL NIL
3

NIL-x331%~~~ IL

H - DISPLAY 32 I I
Display 40. Introducing some variable identity restrictions.

The variable field of the node marked K in this tree is read as follows:

the arc leading f rom the restriction denoted by FREE can always be followed - -

uncond itionally at associate—time; additionally , the arc leading from the

restriction denoted by —X2 can be followed only in the event that the current -

position, corresponding to tree variable —X33, is LISP EQ to the existing

_______ ‘~~~~~ -~~~~~ ---———,—--~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~

36

binding for —X2 (which was established higher in the tree).
-
‘

As a variables field arc is followed during an associative tree access, a

record of the binding which had to be performed in order to follow the arc

will b~ made, and, along with prior existing bindings, is passed to lower

levels of the tree. At the end of a successful traversal to a terminal node ,

all tree variables encountered along the traversal path will have bindings.

They can then be translated back into the original names for the various

variables in the pattern the successful path represents, and then passed to

the body of the SC in case the ensuing polling process determines that the SC

can be run.

This concludes t~e discussion of the PLANT mode insertion process. We

will describe the associative tree access procedure shortly.

2.1.5.4 Discussion and Example

It should be noted that, because of the length sub—indexing out of the —

complexes field of each node, all surviving paths from some application of a

trigger tree to a stimulus will in fact be paths to a terminal node of the

tree (e.g., the match is guaranteed to be exact, with no possibility for an

unmatched dangling part of the stimulus). Therefore, a trigger tree is a kind

of “perfect” discrimination network.

We should also point out that we have made a decision to include only

var iable identity rest r ictions in the trigger tree, and not general semantic

restrictions. Clearly, we pay something for even identity restrictions both

in space (the <var—alt> fields of each tree node), and in time, since

guaranteeing the equality of variable bindings involves ASSOC searching on a

list of bindings at some point. In (M21 with regard to database organization,

McDermott has argued against making identity restrictions during the first

stages of access, arguing that variable identity restrictions are more

efficiently processed after the initial filtering on constant and structural

bases. However, we feel that the potential pruning effect this has on the

accessing of large trigger trees will be well worth the cost.

It should also be noted that it would be nearly trivial (syntactically)

to include arbitrary semantic restrictions on tree variables simply by

_ _ _ _ _ _ “-S -~~~~~~~~ -~~~~~-~~~~ ‘--‘~~~~~~~~~~~~~-

__________ _______ ________________ _________ - -- -

allowing the <tree—var> part of each <var—restriction> to be an arbitrary

S—expression which would hav e to evaluate non—NIL in order for the associated
arc to be taken. However, here we would agree with McDermott that this type of

variable restriction is better handled after the trigger tree has finished

(e.g., as other components of the complex trigger pattern which are polled

after the initial activation, as discussed earlier), since its path—pruning

contribution would probably be negligible in relation to the amount of

additional run time it would incur.

This more or less completes the syntactic description of trigger trees in

their role as the central associative access structure in the CSA SC

component .

To conclude this section on trigger tree structure, we will build up a

new trigger tree TTI from NIL, illustrating the expressive powers of this data

structure. We will call $PLAN T as it is called in the system , but omit (i.e.,

specify as NIL) the SC <body> ’s that would normally be present , and (for the

sake of clarity) use only one—component trigger patterns, rather than complex

ones.

($PLAN T ‘
(+ 1 (LOVES JOHN —X)) (LAMBDA (X) NIL) ‘TT l)

-

I ($PLAN T ‘(+ 1 (KNOWS -X (LOVES JOHN —X))) (LAMBDA (X) NIL) ‘TTI)
($ PLAN T ‘(+ 1 GRUNDGE) (LAMBDA (X) NIL) ‘TTl)
($PLAN T ‘(+ 1 — Q) (LAMBDA (X) NIL) ‘TT l)
($PLANT ‘(+ 1 (KNOWS —X —Y)’~ (LAMBDA (X) NIL) ‘TT I)

-

-
($PLAN T ‘(+ 1 (KNOWS HARY (LOVES —X —Y))) (LAMBDA (X) NIL) ‘TT l)

-5 Display 41. Building up a trigger tree.

The resulting tree is:

1
-

—~~~~~-~~~~~~

—--r
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ui 
38

—
-5- I •

~

4 GRUNDGE~~ ~~~~~~~~~~~~~~~

NIL NIL • 
-

..,‘ ; ‘ t~1ARY I r~ _~~~~~
C) i-IlLI NIL

JOHN I FREE
I ,

‘ I ‘
~~~~~

I — —

A~A. NIL NIL V
13 NIL -)0

9
NIL NIL FREE 1. J 3

c~r,~~t I / I -‘FRLL

~~~~~ 

/—‘ I .. / .
‘

NIL  NIL / ‘s.

LOVES 
d NIL NIL

LOVES

N IL~~32
~~ NIL

FREE I • NIL
JOHN T NIL

NILNIL .-

— 
I

FREEI N I L  _
~334~ 

NIL

• -x2~~

Display 42. Resulting tree.



-~~~
‘ T

~~~~~~~~~~T ~~~~~~ 
‘

-
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

- -

I

39

and, by calling the function ($SROW <trigger—tree>) (Appendix A), we can see
TT1’s LISP manifestation in a formatted form:

( $SHOW TT I):
GRUNDG E

(03 NIL NIL)
(—X = FREE)

(04 NIL (—Q))
(3)

KNOWS

MARY

(3)

LOVES
(—X32 = FREE )

- 
(—X33 = FREE)

(G6 NIL (— Y —X) )
(—X2 — FREE)

(—X3 — FREE )

(G5 NIL (—Y —X))

(3)

LOVES

JOHN

(—X33 = —X2 )
(G2 NIL (—X))

LOVES

JOHN
(—X3 = FREE)

(Cl NIL (—X) )

Display 43. LISP form of the tree.

2.1.6 Trigger Tree Terminal Nodes

A path in a trigger tree corresponds to one associative part of a complex

S’5-- -— - -- - - - -

~

’-—---

~

- -S- - — -~~~--.-—-- --- -— -  — ---- -



_____ _______ ~~~~~~~~~~~~~~~~~ 
-
~~~~~::i:

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ - ‘ - - ‘  - 

-

40

trigger. (Of course, complex triggers which reference the same associative

component will share paths in a trigger tree) . Beyond the associative

information inherent in the path to a terminal node , each terminal node of a

trigger tree must contain information about what to do in case some stimulus

causes that terminal node to be reached during an associative access.

Specifically, we will require the following information at each terminal
-

- 

l node in a trigger tree:

(1) a distinctive marking to distinguish the terminal node from a

non—terminal node

and for each spontaneous computation , S, whose complex trigger pattern

includes a reference to the associative component represented by this terminal

- t node,

(2) a reference to the entity in the system (a LISP GENSYM in our

case) which represents S itself

(3) the polling list, L(A), of other parts of S’s complex trigger

pattern components (produced by $FRAG}IENT) which must be polled

and found to be true before S can be invoked , and

(4) a list of variable mappings which will translate the bindings

attached to tree variables to the variables as they are named in

the original declaration of S’s complex trigger pattern.

We thus define a trigger tree terminal, <tt—t—node> , as follows:

<tt—t—node> :— ( <parent> SC <sc—ref> ... <se—ref> )
<sc—ref> := ( <Sc> <polling—list> <var—map> )

‘ <Sc> := a LISP atom with CSA type “SC”

<polling—list> : NIL I ( <tp> ... <tp> )
<var—map> := NIL I ( <variable> ... <variable> )

Display 44. Trigger tree terminal node syntax.

• I where <tp> is a complex trigger pattern , as defined in Display 15.

—

~

- - --

~

‘ ~~-- - - - 5 5-- S ~~~~~ 



.‘~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~
- ‘--.-.

~
— ‘.

~~~
--5—

~
,,---,.

I
41

To illustrate the form of a trigger tree terminal node, suppose we plant

the following complex trigger pattern in an initially null trigger tree TT2 ,
calling $PLANT:

($PLAN T ‘(AND (+ 1 (LOVES —x —Y))

(+ 1 (NOT LOVE S —Y — X)))
(LANEDA (X) DO—NOTRING)

‘TT2)

Display 45.

(aga in , specifying a do—nothing body for the time being).

Among other things, $PLAN T will crea te a unique internal symbol to

represent this SC. It is to this symbol that it will attach all the relevant

information about the SC.

Suppose in this case $PLANT decides to name the SC “Gi” . Then the

resulting trigger tree, TT2 , would be as illustrated in Display 46 below, this

time shown complete with all the terminal node information.

~

—-

-~

- -
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~

-
~

-- - ‘

42

NODE 
/ 

~~~~~~~~~~~~~ NI
1
L

NIL NIL NIL NIL
LOVES

1 NOT I
NODE N3

I ‘
/ I s.

NIL - NIL NIL NIL (+ 1 (LoVEs —x -v))

NODE

r - I L NI~~-~~~~~~~~IL ,
/ N

:
B~~v

/ / ‘

- - / / (+ .1. (NOT LOVES -Y —x))

E~~PAIH -x 9
- :~ -

/ /
/ /L(A) : ~ __________

I

I
~~
!

~~~
c ,1  

~j
/

Display 46. Example trigger tree terminal node.



____________ 
-5- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~ 

______

43

2.1.7 The Structure of an SC

The SC itself which comes to be created by $PLANT is normally a LISP

GENSYN whose property list contains all the relevant information about the SC.
This information is:

SC—PATTERN the complete complex trigger pattern exactly as it was

communicated via the call to $PLAN T

SC—BODY the LAMBDA expression of one argument which is the SC’s body;
the single argument will receive a list of dotted pairs
representing the bindings which have caused the SC to be

invoked

TREE—LOCS backpointers to a set of trigger tree terminal nodes which

represent the associative components of the SC; these will

be required in case the SC needs to be deleted

In addition to these properties, there is a property related to the

context status of the SC, and some properties related to the manner in which

the SC is to be handled at invocation t ime. The latter will be discussed

later; we will not describe the CSA context mechanism (a fairly

straightforward chronological context scheme) in this paper, other than to

Er - include the code as Append ix D.

2.1.8 SC Associative Tree Access and Invocation

We are now read y to describe the flow of control dur ing an associat ive

trigger tree access. A trigger tree is caused to react to a stimulus by

calling the function $ACTIVATE:

( $ACTIVATE <stimulus> <trigger—tree>)

Display 47. Causing an associative access. -
‘

For instance , if we want TT2 (as def ined in Display 46 above) to react to the

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~
!‘

~~ ~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--- -------
~

- --- —

44

($ACTIVATE ‘(LOVES JOHN ILARY) ‘TT2)

Display 48.

Alternatively, it is possible simply to call:

(TT2 ‘(LOVES JOHN MARY))

Display 49.

since, as any trigger tree is created it is simultaneously defined as a LISP

function (an EXPR) which can “apply itself” to a given stimulus. This

construction was motivated by some considerations about trigger tree control

which we will come to later.

$ACTIVATE is first concerned with locating all SCs which nibble at the

stimulus pattern. To do so, $ACTIVATE calls another f unction , $NIBBLERS , whose
two arguments are the stimulus and the tree. The sequence of events that

— occurs in response to this call on $NIBBLERS is as follows: The root node of

the trigger tree, in this case TT2, is accessed , and a test posed : is the

“current object” (initially the entire stimulus, (LOVES JOHN MARY)) a constant

(i.e. LISP atom) or a complex object? In this case, it is a complex, so the

complex field of the root node of TT2 is searched for an arc out representing

complexes of length 3. One is found , namely the node marked N2 in Display 46;

hence, $NIBBLERS descends into the current object, preparing to move left to

— right, making the new current object LOVES. Additionally , $NIBBLERS asks

whether there are any variables in the variables field of the root node which

could bind to the initial current object. In this case, there are no variables

at all, so no paths begin from the variables field. If some were begun, they

would be pursued “in parallel” with the path we will pursue here, until they

either died out or resulted in successful matches.

At N2, having been recursively entered , $NIBBLERS poses the same
questions: is the current object a constant or a complex? This time, it is the

— -
~~

-— —5

-~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ $ Z Z~~~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --5 - - - - - - - ‘ - 5—- - —-5~~—~- -5 - -~--5.
’ ‘ --5

45

constant LOVES, so the constants field of N2 is consulted to determine whether

there is an arc out associated with LOVES; finding one , $NIBBLERS moves to N3
in TT2 , simultaneously making the new current object the next one to the right
of LOVES in the pattern , namely JOHN. As before, at N2 $NIBBLERS also tries to

match the current obj ect to any relevant variables , but , f inding non e , again
pursues only the constant LOVES path.

At N3, the process repeats: is JOHN a constant or a complex? Since it is

constant, but there is no arc out of N3 associated with the constant JOHN, no

path is followed out of the constants field. But this time there is a FRII

variable to which to bind JOHN, namely —X2. The binding is made, and $NIBBLER S
follows the associated arc to N4, passing the binding just made down to lower

levels of this path. The new current object then becomes MARY.

At N4 an event similar to the event at N3 occurs, namely, —X3 is hcund to
MARY. Then TT2’s single terminal node, N6 is encountered. Because we have

implicitly taken nested complexes’ lengths into consideration in the paths

$NIBBLER S has followed, we know that $NIBBLERS has a non—dangling match , and

furthermore , that the bindings are:

((—X3 . MARY) (—X2 . JOHN))
Display 50.

(and in fact always in order.., the order will turn out to be useful).

$NIBBLERS thus returns with a list of trigger tree terminal nodes

representing successful associative paths. With each terminal is associated

the list of bindings that were made along the path.

Next, for each SC reference on the terminal node’s list of SCs of whose

‘ 

- 
complex trigger pattern this stimulus is a part , $NIBBLERS

(1) associates with each complex trigger pattern variable the relevant

bind ing, after mapping tree variables into the variables as they

were named in the pattern ; in this case, this results in: ((—X

JOHN) (—Y . MARY) )

I-



-

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

- — -

46

(2)  accesses the polling list (associated as L(A) with A— (LOVES —X

— Y ))  of r emaining components of the complex trigger pattern for

this SC, and instantiates this list, substituting the variables —x
and —Y with their associated constant bindings (i.e. creating an

instantiated copy). It should be noted that in general (but not

in this case), the instantiated result will still contain —

variables which were part of the complex pattern , but not

mentioned in the associative component which has given rise to the

polling;

(3) polls the resulting patterns to determine whether the SC is ready

to run.

In the case of this example, the polling will attempt to determine

whether or not it is true that (NOT LOVES MARY JOHN) via a call that looks

like:

(+ 1 (NOT LOVES MARY JOH N ) )

Display 51.

“True” will mean: can the database/deductive components of the system decide

on a truth value for this fact , within the allowed energy budget specified in

the <energy> field of this call as it was specified in the complex trigger -
‘

pattern . In this case, since we have limited the budget to exactly one fetch,

the SC will be run if and only if (NOT LOVES MARY JOHN) is explicitly in the

database.

This interaction between association on the one hand via trigger trees,

and polling on the other hand via the deductive components of the system will

provide a basis for some intriguing theoretical interactions; we will discuss

this i.iore in the second half.

2.1.8.1 Polling and $ALLBINDS

The code which , given some component of the complex trigger to be polled ,



~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
~~~~~A- ~~~~~ 

--  — -- 
J~~~~- -

_

~~~ ~~~~~~~~~~ r~~ ~~~~~~~~~ - ‘“~ --~
-

47

carries out the polling (search for wajs to instantiate the component’s

var iables in order to make it true), is called $ALLBINDS. This function is
basically no more than a control and accumulating function which drives the

deductive component in ways specified by the pattern.

$ALLB1NDS will accept any complex trigger pattern, <t p>, as defined

earlier, and control a sequence of calls on the database/deductive components

of the system, accumulating a list of ways the pattern can be caused to become
true (or, in the case of a pattern with no variab ~, compute the truth of the

pattern).

As such, $ALLBINDS is of general theoretical utility for converting

opaque references (references by features) called descriptors in the CSA

system, into identity references (pointers to internal memory tokens and

concepts within the CSA system). Given a complex descriptor , $ALLBIN~)S will

return either NIL, in case there is no way to satisfy the complex pattern , or

the form:

(T <binding—list> ... <bind ing—list>)

Display 52. $ALLB INDS response form.

$ALLBINDS is scheduled to be developed more in the near future, so we

will defer any further discussion of it until a later paper. The $ALLBINDS

code , rudimentary as it is, is included in Appendix C.

2.1.8.2 The SC ~~~y and Invocation Control

Returning to our (LOVES JOHN MARY) activation example, assuming that a

successf ul poll ing has occurred , the SC’s body is ready to be invoked. In our
example , only one copy of it will be invoked. However, if there had been any

variables left in the components of the complex trigger which were polled , it

could have happened that, within the cumulative energy budgets, there were

numerous ways to bind the remaining variables. For example, if the original

trigger pattern had been:

- “ - - -- ~~~~~~~~ —~~~~‘-- —‘---- - ‘---. —‘~~~~~~~
r ~~~~~~ ~~~

:- i—~
-
~~
-: ----~~~~~~~-~

48

(AN D (+ 1 (LOVES —X — Y))

(+ 1 (NOT LOVES —Y —X))

(+ 1 (LOVES —Y —Z)))

Display 53. A more combinatorial pattern.

$ALLBINDS would have seen two items for polling, instantiated as follows for

the associative stimulus (LOVES JOHN MARY): -

(+ 1 (NOT LOVE S MARY JOHN))

and (+ 1 (LOVES MARY —Z))

Display 54. Pattern to be polled.

If Mary can be found to love more than one person, say PETE and JAcK, we will
now have two ways to instantiate the —X , —

~~~, —z of this pattern :

(1) ( (—X.JOIIN ) (—Y.HARY ) (—Z.PETE) )

(2) ( (—X .JOHN) (—Y.MARY) (—Z.JACK) )

Display 55. Multiple invocations from one stimulus.

and are confronted with the problem of making an interpretation of this

situation. 
-

We choose the obvious one: invoke two copies of the SC, calling one with

the first alternative instantiation , the other with the second. This seems to

be the only reasonable interpretation , since the ways to bind variables during -~~

polling can become rather involved.

The actual invocation of an SC whose trigger pattern has survived polling

happ ens as f ollows: An SC body is always def ined by a LAMBDA expression of the
fo rm: 

-5 -~~~~~~~~~~~~ - — -  -~~~~~~~~



-. - -- --w—- —~~~- -—- -— - -~~~--—- -- 5,-- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

49

(LAMBDA (X) <si> ... <an>)

Display 56. Form of an SC body.

where <sl>,...,<sn> carry out the SC’s computation. As each SC is created, it,

like a trigger tree, is simultaneously def ined as a function whose LAMBDA

expression is as shown above. This means that if, say, some SC is known

internally as Cl , invoking it will amount simply to calling it with its single

argument bound to the list of bindings being passed in from the trigger

pattern :

(Cl <binding list>)

Display 57. Invoking SC Gi.

where a <binding list> is a list of dotted pairs associating variables and

constants.

In the CSA system, $ACTIVATE does not actually cause the invoked SCs to

be run ; rather, it constructs a queue of calls such as these and returns the

queue as its r esponse (o r , in case it is called with an optional third

argument , $ACTIVATE will augment an exist ing queue named by the optional

argument). As it queues each SC call, it will associate a run condition with

the call. The interpretation of an SC run condition is: even though the SC has

been successfully queued , to run, it will not actually be allowed to run until

the run condition (an EVALable LISP expression) becomes true. We will discuss

this more later on.

-
:

- -
2.1.9 SCs and Context

Every SC in every trigger tree has an associated context (environment in

which it is to be considered active). SCs can therefore be masked and unmasked

in various context levels by the general CSA context functions $HIDE and

$tJN}tIDE. The code for these is included in Appendix D. In fac t , as will be

- - 5 —- —---- r -

50

described shortly, entire trees can be masked and unmasked, so that we have

the possiblity for one SC annihilating another SC, or controlling an entire

population, etc.

We have now more or less reached the end of our treatment of the

engineering issues of how to store and access spontaneous computation complex

trigger patterns. We are ready now to consider how to harness this type of

computation in a higher level control paradigm .

2.2 Higher Level Control of Spontaneous Computation

The question of what to do with SCs when they are ready to run is very

much related to what it was that caused them to want to run. Therefore , let

us return now to the metaphor of the central arena which some population of

SCs has been watching , and ask: what types of activities are reasonable to

monitor?

In the two languages which have employed SC as a central paradigm ,

PLANNER and CONN IVER , the activities to which SCs react are limited to two

specific types:

(1) changes to a central database

— (2) requests for service on a “hot line” to which many computational

modules have access.

“Database change” means either the storage or erasure of an S—expression from

the database; in PLANNER, the SCs which monitor stores and erasures are,

respectively , THANTE and THEP.ASINC “theorems”, wh ile in CONNIVER , they are

called IF-ADDED and IF—REMOVED “methods”. An SC which monitors the hot line

for a request which matches its (simple) trigger pattern is called a THCONSE

theorem in PLANNER , an IF—NEEDED method in CONNIVER. Thus, the central arenas
-

-
in these languages are limited to database changes and the hot line.

The approach to SC trigger pattern organization we have developed makes

it natural to group SCs into populations in the sense that each trigger tree

could , e.g., be thought of as a functional group of watchers tuned to some

specific part of the environment , some specific phase of an operation, or some

specific context. There may then either be one large, system—wide population,

- - - - - - - 5 ~~-- - - -

- - -

51

as there is in PLANNER and CONNIVER, or there may be numerous small trees. In

the latter arrangement, trees would perhaps pay exclusive attention to one

arena, or perhaps each tree would gather its perceptions from several arenas.

This natural tendency to split the SC population into functional

subgroups suggests, conceptually at least, the Idea of elevating the notion of

a SC trigger tree to the status of a self—contained “programming language

construct”, manipulable as a single entity at some still higher level.

Regarding SCs in this way suggests a notion of trigger tree attachment to a

- - process. Attaching a trigger tree, TT, to a process , P, would amount to

allowing the population of SCs represented by TT to fishbovl P’s activity,

reacting to it in ways that are either transparent to P, or in ways that alter

or destroy P.

2.2.1 Channels

If this is our vision of SC populations , to what are we to attach trigger

trees? In PLANNER and CONNIVER, there is one large population attached to the

store function , one large population attached to the erase function , and one

large population more or less hard—wired into the central control for the

system , i.e. the hot line. From these ideas, we have made the (intellectually

uodest) leap to the notion of a channel.

We define a channel to be the medium whereb y one LISP function calls

(posts requests to) another LISP function . Dolig this will essentially allow

r -
us to “make public” what is ordinarily the private calling protocol between

functions, the locus of all the real work in LISP. This metaphor of a channel

will also give rise to a new programming construct , the CHANNEL (1) , to which

trigger trees may now be attached .

We will visualize a channel as follows:

I

~

— —

-

- -
~~~~~~~~~ !~~~T~~~ -----~~~~~~~~~~~~~~~~~ -~~ -5— — -5

- - - ~~~~~~~~~ - -  - - ~~ ~~~~~~~~~~~~ 
_ -~~~~~~~~~ rr

[Fl 

52

SIGNAL

H 
CHANNEL d< 

X ~~~~~~ 

_ _  
~~~~~~ 

-

~

-

- -
TRIGGER

_ _ _ _

TREE A SERVER F2

Display 58. Crap~-ic representation of a channel.

- t Now, wherever function Fl used to call function F2 via the standard LISP

protocol , we will now require Fl to post all requests to F2 on thIs

intermediate construct , the channel. Unbeknownst to either Fl or F2, we will

now admit the possibility of one or more trigger trees, as well as other

functions , such as F3 in Display 58, being attached to this channel, either as

“transparent ”, benign watchers , or as “modifying”, possibly inimical watchers.

Since all the work in a LISP environment transpires via function calls,

if we give watchers the ability to see calling sequences, we will have a “most

general” SC attachment paradigm. Although we will tend to regard the new

channel construct as a state of mind (i.e. a convention not enforced by LISP),

one could imagine enforcing this style of communication by restructur ing

LISP ’s control . Doing so would bring us into a realm of thinking akin to

Hewitt ’s “actors” and “messages” paradigms [H2]. (In fact , in retrospect , the

whole concept of channels and trigger tree attachment fits in very nicely with

Hewitt ’s view of computation.)

We are about to present a specific model of channels and trigger tree

attachment which develops the notions via a hardware channel metaphor. But

before we do, we ought to point out that the new notions will apply to a

paradigm in which SCs can react only to changes in states of computation ,

~-~~~~~— -——--- -~~~--~~~~~~~~~~~ -“~~~~ -~
_
~~ r~~_ -

F~~~~ - -~- T~ :~~~~‘~~~~
-
~~~~~ ~~~~~~

- - - -
~~~~~~

‘
~~~~

‘‘
~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

53

rather than to states of computation themselves. Ordinarily, this will not be

a severe restriction , since most reasonable systems will be built up or taken

apart incrementally, and incremental model evolution fits our SC paradigm

precisely. However, it will not be possible , say, to confront an SC system
such as we are developing with a snapshot of a database and say “react”! This

is another style of spontaneous computat ion, which, although it could be

simulated by methodically lifting pieces out and putting them back in again

while populations of our SC5 were watching, seens to be fundamentally

different ; it is in some sense “far more associative”, since it does not rely

on triggers, but rather on configurations. We will not pursue this style on SC

in this paper , but will keep it in mind as a future idea. **

3 ** We are always interested in staying close to our intuition about how
the human brain must work. Even if we could engineer some exotic theory and/or
hardware to react to configurations, it is not clear that this would be a good
model of human associative powers anyway ; the feeling is that the model we
have been developing coinc ides with some key intuitions about how our brains
work.

2.2.2 Channel Characteristics

A channel is a construction with the following features:

(1) it has a one—dimensional “extent”, with directionality

(2) other constructs can be attached to it at ~~~ points; there is no

limit to the number of tap points

(3) the left—right ordering of tap points is significant

(4) each tap point is either a watcher or a server, and have mode

either transparent or modifying

(5) signals (either requests to a server, or a response from a server)

may be injected on a channel at arbitrary starting points, and

propagate either left o: right.

( 6) both channels and tap points are context—sensit ive , so that

reconfiguring the medium by which one function calls another is

relatively simple.

- - -



~~~- T

54

In this manner , any given trigger tree may be attached to any number of

— channels at any number of points.

The primary channel—related functions in the current CSA system arc: **

($CONNECT <object> <channel> <mode> <type>

<in—relation—to> <other—point>)

($DISCONNECT <object> <channel>)

.1 ($INJECT <signal> <server> <channel>

<in—relation—to> <other—point> <prop—direction>)

Display 59. The 3 primary channel functions.

** The code for all channel—related functions is included as Append ix B.

where the arguments to these functions are defined as follows:

<object> :~ <watcher> I <server>

<watcher> :~ <trigger tree name> <LISP function name>

<server> :— <LISP function name>

<channel> :~ <LISP atom>

<mode> :~ TRAN SPARENT I MODIFYING
<type> : WATCHER I SERVER I RESPONSE—UATCHER

<in—relation—to> :* BEFORE I AFTER AT

<other—po int> :— <watcher> I <server> I

- RIGHT—END I LEFT—END
<signal> :~ <LISP S—expression>

<prop—direction> :~ LEFT I RIGHT

Display 60. Channel functions argument syntax.

- -- -~~~~~~~ - -- -~~~~~~~ -

-

55

and the semantics of <other point> are that it be some existing tap point on

the channel.

2 .2 .3 Channel Operation

Since a channel is both spatial and directional, we will imagine a signal
to propagate from some starting point in some direction with f in i te speed . As

it passes by a t ree of watchers, any relevant watchers in the tree will be

triggered and run , and either (1) allow the signal to continue as—is , (2)

modify the signal but allow it to proceed , or (3) block the signal altogether.

If and when the signal reaches the requested server , the server will be run

unconditionally on the (possibly modified) signal. Its response will then be

momentarily held while the signal is allowed to propagate to the end of the

channel, or until it is blocked . At that time, the server’s response will be

injected on the channel , starting at the server’s tap point. The response is

defined simply as the LISP value the server returns, and it will propagate

from the server’s tap point of the original request that instigated the

channel activity. On its way back, the response may pass over a set of

“response watchers” which, similarly, can have the potential for altering or

blocking the response as It passes on its way back to the requestor.

As an illustration , we will set up a rather simple channel configuration

which models the THANTE capability in PLANNER. This will amount to activating

any relevant watchers after some fact has successfully entered the system ’s

database.

The CSA calls required to set up this channel arc:

($CONNECT ‘$STOP~E ‘DB—IN—CH ‘TRAN SPARENT ‘SERVER
‘AT ‘RIGHT—END)

r~ ($CONNEC T ‘TRIGGERTREE l ‘DB—IN—CH ‘TRAN SPARENT ‘WATCHER
‘AFTER ‘$STORE)

Display 61. Setting up a channel to model PLANNER.


~~~~T~~~~~~—~- -- - ~~~~~~~~~~ ~~~~~~TT~ - -
~~~~~~~~~~~~~~~

-
~~~

- -
~~~~~~~

---.

56

i.e., attach the function $STORE (the CSA database storing function) to
channel DB—IN—CH (creating this channel if it does not already exist) as a

transparent server at the right end of the channel; then attach TRIGGERTREE1

to DB—IN—CH as a transparent watcher after (to the right of) $STORE.

Now, wherever $STORE would have been called directly, as in

($STORE ‘(LOVES JOHN MARY))

Display 62. The old way to store facts.

we will in the future store facts by placing them as signals to $STORE on the

DB—IN—CH :

($INJECT ‘(LOVES JOHN MARY) ‘$STORE ‘DB—IN—CH
‘AT ‘LEFT—END ‘RIGHT)

Display 63. The new way to store facts.

that is, inject the signal (LOVES JOHN MARY) to the $STORE server on channel

DB—IN—CH , starting at the left end of the channel, propagating right.

If , on the other hand, we wished the population of SCs in TRIGGERTREE1 to
have access to the signal before $STORE sees it, and furthermore , to be able

to modify or block the signal altogetIL.~r, we would set up DB—IN—CH as:

—

($CONNECT ‘$STORE ‘DB—IN—CH ‘TRANSPARENT ‘SERVER
‘AT ‘RIGHT-END)

($CONNECT ‘TRIGGERTREEI ‘DB—IN—C}I ‘HODIFYING ‘WATCHER
‘BEFORE ‘$STORE)

Display 64.

~

_ .j

~

-5 _

~

- 5___ __
- -- --. --~~~~~~~~~~~~~~~~~~ -~~~~-~~~~— - —

~ - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~

-
~~~~

57

and then inject requests from the left end.

Of course, by knowing the structure of the channel, we could sneak

signals past this population of modifying watchers either by temporarily

disconnecting them:

($DISCONNECT ‘TRIGGERTREEI ‘DB—IN—CH)

($INJECT ‘(LOVES JOHN MARY) ‘$STORE ‘DB—IN—CH
‘AT ‘LEFT—END ‘RIGHT )

( $CONN ECT ‘TRIGCERTREE I ‘DB—IN—CH )

Display 65. A temporary disconnect—reconnect sequence.

or, more simply, by injecting the signal to $STORE at a point where

TRIGGERTREE I would be bypassed, or seen only after $STORE had seen the signal:

($INJECT ‘(LOVES JOHN MARY) ‘$STORE ‘DR—IN—Cl!

4 ‘AFTER ‘TRIGGERTREE1 ‘RIGHT )
— or - 

-

($INJECT ‘(LOVES JOHN MARY) ‘$STORE ‘DB—IN—CH

‘AT ‘RIGHT—END ‘LEFT )

Display 66. Putting the directionality to use.

If , addit ionally , we desired that a server ’s response be monitored , we

would attach a trigger tree of response watchers, either blocking or

transparent , at some point on the channel where response signals from the

server back to the requestor were expected to pass. For example, in the CSA

system , $STORE will return a GENSYIImed atom as its response, indicating where

the new fact  has been stored . Knowing this, our “population” of $STORE

j  
response watchers need be nothing more than a single SC whose trigger pattern

J is simply:



(+1-X )

- - 
Display 67. A simple response watcher.

(i.e. a single variable to which the passing GENSYIi would bind). The body of

this single SC could ti-ien manipulate or change the new fact in any way

required , and possibly modify the signal as it propagated back to the

injector. -

- 
We would stage such a situation by:

($PLANT ‘(+ 1 —X) (some body> ‘TRIGG ERTREE2)

($CONNECT ‘TRIGGERTREE2 ‘DB—IN—CH ‘MODIFYING
‘RESPONSE-WATCHER ‘ATFER ‘LEFT—END)

Display 68. Setting up a response watcher for $STORE.

2.2.4 
~~2 Points

A watcher need not be a trigger tree ; instead , it is allowed to be an

arbitrary EXPR of one argument. This is in reality how a trigger tree looks

to a channel anyway. In the implementation , as a signal passes by a watcher,

the watcher is simply APPLYed to the signal. If the watcher is a modifying

watcher , W, the signal which will propagate past W is simply the value

returned by V.

In order to make trigger trees compat ible with this protocol, every

trigger tree (as it is created) receives a function definition as well as the

tree s t ructure  itself. As shown earlier, this allows us to regard the tree as

an EXPR of one argument which can be “applied to a stimulus” in order to

ac t ivate some subset of its population of SCs. Hence, as a signal passes by a

tr igger tree , T , T is simply APPLYed to the signal.



- ________

in the case of a modifying watcher, W, which is a function (rather than a

trigger tree), the modified signal to be propagated can be defined simply as

the value V returns. But for trigger trees, which are mobs of computations not

necessarily related to one—another or coordinated in any way, and where there
could be quite a few relevant SCs which run in reaction to some signal, there

is a question of how the modified signal is to be computed and communicated

back to the channel.

To solve this dilemma , each trigger tree has an associated sig~ial buffer,

depicted as:

CHANNEL — , 1) 

— 

>‘

I SIGNAL

SIGNAL r i  i
BUFFER

Tf~~GGER

- 

I 
Display 69. Trigger tree signal buf fe r .

As the tree is about to be applied , its signal buf fe r  is initialized to the
original signal. Any SC that wishes to alter the signal does so simply by -

replacing the contents of its tree’s signal buffer with some new value. The

value in the buffer after all SCs have been run is the signal to be

— 
- propagated.

By definition, when a watcher modifies the signal to NIL, the signal has
been blocked , and its propagation down the channel ceases.

The LAMBDA expression which defines a trigger tree as a function as it is
created has the f ollowing form :

I



-
~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~~~~~~~~~~~

‘ ‘ - -
~~~~~~~~~~~~~~~

60

(LANBDA ( S T IM U L U S )
(PUT <tree name> ‘RESPONSE—BUFFER STIMULUS)
(NA PC ($ACTIVATE STIMULU S <tree name> )

( LAMBDA (SC) (COND ( (EVAL (CDR SC))
( EVAL (CAR SC))) )))

(GET <tree name> ‘RESPONSE—BUFFER))

Display 70. Trigger tree functional definition.

i.e., f or a given STIMULU S, initialize the buffer to this stimulus , $ACTIVATE
all relevant SCs, then run each in turn; finally, return the (possibly

modified) signal buf fe r  as the value of the whole computation. The COND inside
the LAMBDA in the IIAPC test s the SC’s “run condition”, which will be described

shortly.

2.2.5 Possibilities for Channels

Channels are powerful constructions since they fracture the private
- 

- 
communication channels among the LISP function calls which implement a theory.

While we have implemented enough to provide a flexible SC framework, there are

clearly many other ideas to be pursued concerning channels. One obvious idea

is to allow channels to connect as tap points to other channels, giving rise

to situations such as:

- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



___________  

~~~~~~~~~~~~~~~~~~~~~ -‘~~~~: 

61

~~~~~I
1

1~~~~~~~

Display 71. Channel—channel interconnections.

Another obvious generalization would be to move away from requests to

servers by name, and toward a more pattern—directed scheme wherein requests

would be injected to (possibly multiple) servers on the basis of pattern

matching the request pattern against the patterns advertizing the servers’

capabilities. Of course, we already have this ability if , instead of

distinguishing servers from watchers, we regard all servers as a special

subclass of watchers. For example , instead of attaching $STORE to a channel

directly as a server, we could fabricate an SC which would react to patterns

of the form ($STORE —X), place it as the sole SC in some tree, then attach the

tree to the channel as a watcher. $INJECT’s would then look like

($IMJECT ‘($STORE ‘(LOVES JOHN MARY)) ‘DB—IN—CH
‘AT ‘LEFT—END ‘RIGHT)

Display 72. Calling $STORE as a watcher.



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~- :

62

We want to avoid the temptation of inventing control structures with no

good applications in mind; so we will be ascetic and postpone any orgies in

control structure until some realistic uses for the exotic possib ilities

arisel

2.3 Some Finishing Touches on the Engineering

$PLAN T , the function which creates SCs and knits their complex trigger

patterns into some trigger tree, will accept three optional arguments in

k addition to its th ree mandatory ones (trigger pattern , SC body, and trigger

tree). The optional arguments are:

(1) a reference name, specified by the form ‘(N. <LISP—atom>) as a

t
calling argument to $PLANT; if present, this will cause the SC to

be named , as in:

($PLAN T ‘(AN D (+ 1 (UNSUPPORTED —X))

(— 10 (DISTANCE —X EARTH ORDER}IILES)))

<some body>

‘TRIGGERTREE3
‘(N.EARThGRAVITY))

Display 73. Naming commonsense earth gravity.

(2) a run—queue priority, currently either FRONT or REAR, specified by

the form ‘(P.(FRONT,REAR)). This will tell $ACTIVATE what to do

(with the SC when queuing It up for subsequent running. $ACTIVATE

will ordinarily form a list of SCs to be run, and simply return

this queue as its value. However, $ACTIVATE may be called with an

optional third argument which names some existing queue to which

it should send SCs as it invokes them. In either case, each SC,
via this priority property, may specify the manner in which the SC

is to be queued : either placed at the FRONT of the queue (the

de fau l t) , or at the REAR . We expect eventually to upgrade this

fac ility to accomodate numerical priori t ies computed by some more

-~~-~~~--~~-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

~~- - - -~~—-~~~~~~~~ —-—--.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

63

— 
sophisticated criteria; but for the time being, we have no need

for this.

(3) a run condition, denoted by the form ‘(R.<condition—builder>)

where <condition—builder> is an S—expression which will be EVALed

immediately prior to queuing an activated SC for running. The form

which <condition—builder> constructs will be associated with the

SC invocation call on the run queue; the SC will not be permitted

to run until this condition is true. For example, if we did not

want some SC to run, even though activated , until some timer,

TIl lER , had ticked , say, 10 times, we would include a run condition
- 

- with the SC as it was planted: **

~

- t
( $PLAN T (some trigger> <some body> <some tree>

(LIST ‘GREATERP ‘T IMER (PLU S TIMER 10 ) ) ) )

Display 74. Attaching a run condition to an SC.

An SC in a trigger tree which is attached to a channel will be run
after a successful invocation only if its run condition evaluates

non—NIL at the time the tree is activated by a passing channel

signal; SCs whose run conditions are not satisfied at that tine

- 
- 

are simply discarded. Because of this , we ordinarily omit the run

condition when defining an SC which will participate in a tree

attached to a channel, letting the condition default to TRUE.

** Crinberg does this type of thing in the CSA Mechanism Simulator ,
described in [RG1J.

Ilany extensions to this rudimentary SC invocation queuing scheme will be

possible, and probably desirable. For example , in addition to run conditions,

it will probably be useful to have abort conditions which would, upon becoming

t rue , cause the SC to be purged from the run queue. Again, we have held back
in this  area until a better picture of what will be needed emerges.

-- - - -  - — ~~~~~ - ~-



~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—-

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

64

We have now described most of the design and engineering points of the

existing SC component of the CSA system. Appendices A through E contain ,
respectively, the code for the SC component , the channels component , the

database component , the context component , and some miscellaneous related

functions. The contents of these appendices form a closed system which may be

coded in any LISP; to expedite this, we have included as Appendix F a list of
known differences, and their ameliorators, between our version of Wisconsin

LISP for the UNIVAC 1110 and other more widespread LISPs such as Stanford

(UCI) LISP, MACLISP and INTERLISP.

_ _ _ _ _ _ _ _  - -



-~~ -~ —.----- -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

65

3. ThEORY OF SPONTANEOUS COMPUTATION IN COGNITIVE MODELS

At this point , we are ready to move into some more theoretical
considerations about how SC can be put to use in cognitive models. We will

begin with the interesting question: What is the relationship between the SC

component and the deductive component of the system as manifest during the

polling process? In particular , what effect ought partially triggered SCs

have on the system?

3.1 Partially Triggered SCs

Each SC trigger pattern may be regarded as a spiny urchin (sophomoric

metaphors notwithstandingl); when any of its spines are touched associatively

by some passing object, the rest of the spines are set in motion , by a polling

process. (Is this the way a real urchin works?) While the triggering is purely

associative, the polling process which ensues is very deductive, or

goal—directed in the sense that in its subsequent behavior , the system becomes

(at least momentarily) motivated to seek out the polled conditions to enable

the SC to run . In a very importan t way , therefore , SCs will comprise a basic

source of goal direction.

One interesting question is: what ought to happen when some trigger fires

associatively on some stimulus, causing polling to occur , but then not all the

required components of the trigger pattern can be derived deductively?

Two obvious things could happen : the SC could simply be put back to

sleep, retaining no memory of anything that just transpired , or all the

partial results of the initial association and subsequent polling could

somehow be remembered. We will call these two general strategies the pulse

— - model and the pressure model of SC activation. The term “pressure” is intended
• to suggest a cumulative buildup of evidence in favor of running the SC. The

term “pulse” is intended to suggest the transient nature of SC trigger

:- - patterns which have no memory of past partial successes; unless all required

components of a pulse SC ’s tr igger pattern are found to be true

simultaneously, the SC never fires.

There will be app lications where we can get by with a pulse model.

Suasman , for  instance has what amounts to a pulse model in his electronic

_ _ _  
-



~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 

~~~~~~ ~~~~~~~~~ ~~~~~~~~~~ - ~ 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~‘r~

T_

66

circuit analysis program ESS1). Since his SCs are monitoring nominally

straightforward physical conditions (e.g. the presence c’r absence of a pulse,

the instantaneous current through, or voltage drop across a component , the

state of some transistor), the pulse model is apparently adequate in his case.

However, the pressure model is far more interesting theoretically, both

because it conserves what it has discovered as partial evidence (via what may

L 
have been a very costly deductive process), and because it can be made to give

F rise to “lingering motivations” within the system , i.e. to focus what happens

in the future on the basis of what has happened in the past. We will take a

raoment to expand on the notions of pulse and pressure by drawing analogies to

computer hardware ; then we will consider how the pressure model might be

~ } implemented and the theoretical implications of doing so.

3.1.1 Pressures, Pulses, AND Gates and Memories

If we were to ignore (without loss of generality) the disJ unctive

components of an SCs trigger pattern , we would see a pattern of conjunctive

conditions. The analogy is thus one of an AND gate , where the gate’s inputs

are the conjunctive couponents of the trigger pattern , and the gate’s output

is the cumulative effect produced on the system by running the SC’s body:

:: EFFECTS

Display 75. An SC as a symbolic AND gate.

I
But , of course, instead of binary pulses , each line will now carry more

complex symbolic information. In our scheme , this symbolic information on any

given Input line can be distilled down to a binding list , indicating how the

variables of the conj unctive element must be bound in order for  its input l ine
to be high (active). The sheer existence of the line will imply a specific

relationship (e.g. LOVES) among the bind ings which flow on the line.

~

----- _  _



-- - 

~ ‘- i- - -
~~~T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

67

For the analogy’s sake, let us assume that each SC body’s computation

will be such that the body simply asserts a new piece of knowledge whenever

its t r igger pattern is fulfilled for any particular set of input bindings.

(That is, the body produces no strange side—effects.) If we make this

assumption, the output of our AND gate can then also be expressed as a binding

list. An example is shown below in Display 76.

(AND (+ 1 (LOVES —x —Y)) ‘— ~~
=-==

~~ > (UNUAPPY —X)

(+ 1 (NOT LOVES -Y —X)))

((—x.JoHN)(—v.t~ Rv))

((-x~.r~N)~~~~~
((—x.r’w~v) (—Y.JoHN))

Display 76.

Given any population of SCs restricted in this manner, it will be

possible to construct a logically equivalent hardware configuration , keeping
-

in uind that lines carry not binary pulses, but binding lists.
-

Now , “pulse” in this setting will have the obvious interpretation :

bindings exist ou lines only in short bursts; if not all conjuncts are present

simultaneously (and furthermore , have compatible binding values), no output

will be produced by the AND gate, and no memory of a near—miss will ever

exist .

“Pressure”, on the other hand, will amount to levels being maintained for -


~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

68

extended periods of time on the various lines. If this is to occur , we must

imagine each line to possess a memory for recording all the various binding
lists which have “backed up” on that line, but which have not yet participated

in a full triggering of the SC. For example, suppose (for the SC trigger

pattern of Display 45), the system acquires:

(LOVES JOHN NARY)

(LOVE S PETE RITA)

(LOVE S SALLY BILL) -

4 Display 77. Some knowledge that backs up.

all before it becomes aware of any of:

(NOT LOVES MARY JOHN)
(N OT LOVES RITA PETE)
(N OT LOVES BILL SALLY)

Display 78. Information that would unclog the backup.

Then, in the pressure model , the backup on the (LOVES —x —Y) line of the AND
gat e of Display 76 would look like:

-~ - — —

___________ — —

I

69

((—x .JoHN) (—v.~~Rv))
((—x.PETE) (—v.RrrA))
((—x1 SAu v)(—v.BIuJ)

Display 79. Lovers backups.

It is interesting to contemplate what such a logic would look like, how
it would behave , and how it would be implemented in hardware gates that could

actually manipulate symbolic signals on all lines instead of binary pulses.

(What would correspond to a counter or a flip—flop?) However, rather than

pursue the hardware analogy, we will turn to software alternatives and their

implications for carrying Out a pressure model.

3.1.2 SC Splitting

One obvious technique for managing pressure would be simply to attach

each backed up binding list to its associated conjunctive component in the
— trigger pattern. This would be directly analogous to signals backing up on an

input line of the AND gate. But , wherea s we would hope to solve the time

problem of recognizing when backed up signals were f inally usable by
- - - associative hardware in the AND gate analogy , the runtime overhead incurred by

this backing up of signals in a sequential simulation makes it an unreasonable

idea. In addition , while backed up binding lists certainly do constitute a
memory for what has happened in the past , the memory would be buried in an

obscure place and form if pressure were implew~nted by attaching a list of

backed up bindings to components of SC trigger patterns at run time.

Because of this, it is hard to see how to put such a scheme to use as a

- - — ~~- -~~~- - - - ~~~ --- ------ - - - - - -- - -
--

- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

70

source of motivation (to fulfill bindings of the remaining AND gate lines) to

the system; and since deriving goal direction from partially activated SCs

seems to be an important idea, we would reject this approach to pressure even

if it ~zere timewise inexpensive.

But there is another, conceptually different approach to implementing the

pressure model. Suppose SC X’s trigger pattern is initially stimulated by

stimulus A; suppose the polling process, interacting with the deductive

mechanism , ascertains that certain ones of the other required components of

the pattern are satisfied , but that one or more remain unsatisfied (that is,

not all of L(A) is satisfied).

- - 

If the parts satisfied by the polling process are X1,...,Xj, and the

unsatisfied ones are Y1 ,...,Yk , we can conserve much of the effort expended to

that point by splitting off the as—yet unsatisfied portion of the pattern ,

Yl ,...,Yk, and instantiating as much of it as possible with the various

bindings derived from those parts, A,X1,...,Xj, which have been satisfied.

In general, this may give rise to numerous partially instantiated

patterns, corresponding to each possible binding set (way to perform a partial

instantiation of Yl ,...,Y k)  derived from A,X 1,...,Xj. We will call this

process SC splitting.

SC splitting will amount to a narrowing of the scope of applicability of

the original SC, S, to some subset of the original class of situations to

which S is applicable. In this sense, SC splitting provides not only an

implicit memory for what has happened (I.e., it creates simpler AND gates

whose existence represents some combination of backed up binding lists), but

also a theoretically important strategy for narrowing the system’s future

focus according to what it has become aware of in the past.

As an example, suppose there is an SC whose pattern is:

(AND (+ 1 (DISLIKES —X —Y)) —u—> (DENY —X —Y) **
(+ 1 (REQUESTS—HELP—FROM —Y —X)))

Display 80. 

- - - ~~~-- --~~~~~~~~~~~~-



71

** Again, we are using rather ludicrous predicates in these examples -
simply for the sake of brevity in the representation!

and the stimulus: (DISLIKES JOHN PETE) appears. Suppose furthermore that this

SC , aroused by this stimulus , is then unable to determine (REQUESTS—HELP—FROM
PETE JOHN) dur ing polling. Rather than allowing the SC simply to doze o f f  -

again , we will instead split and instantiate it , giving rise to a new SC whose
pa t t e rn is:

( + 1 (REQUESTS—HELP—FRO M PETE JO HN ) )  —===> (DENY JO1i~ PETE)

Display 81. A split and instantiated SC.

thereby arming the system with a new piece of knowledge of more limited scope

than before and preserving a “memory” of partial activation.

3.1.2.1 SC Splitting, Context and Frames

If we now visualize what begins to happen system—wide in a model that

splits SCs, we can see the possibility for many SCs becoming partially aroused -

and satisfied by some stimulus, say, (DISLIKES JOHN PETE). That sub—population

of SCs which nibbles at this stimulus cons t i tu tes , In a ve ry real sense , the -

model’s composite understanding of what DISLIKE S means; after  all , the

“meaning” of a (DISLIKE S —X —Y) relationship can be no more than the sum of

all la rger pa t te rns  in which It occurs.

- 
- The act of sp l i t t ing and ins tan t ia t ing all SCs that nibble at some -

-

-
- 

I s t imu lus involving DISLIKE S therefore  amounts to conditioning the system with

- - 

an implicit DISLIKE S relationship betwe en the two people involved . The way the

system behaves in the future will then reflect this conditioning through the

— — population of specialist SC5 which were spawned by the splitting process.

If we regard the population of SCs wh ich would nibble at some stimulus as

the f ram e (Minsk y [113]) for that stimulus , then the event of splitting and

ins tant ia t ing  that  population for  some particular instance of the stimulus

~~IIIIiiiiL ~~~ ~- _
~A _ 

-- —- 



- 
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

will correspond to instantiating its frame with specific terminals (to use

Minsky’s terms). In other words, all instantiated and split SCs which would

nibble at (DISLIKES JOHN PETE) will collectively represent a copy of the

“DISLIKES” frame, instantiated with respect to JOHN and PETE.

This similarity between partially activated SCs and frames is

aesthetically pleasing , since it seems to tie some ideas together. All the

ideas have to do with the system being able to “tune” itself automatically to
a sit uation in order to access the most relevant world knowledge in the most

efficient manner at the most opportune moment. We have previously been

interested in this idea of tuning within a totally different , demand—based

computation framework as described in [R 2 J . In that framework , tuning means

plant ing so—called “bypasses” in the selection networks of the other

theoretical half of the CSA system , the more goal—directed components.

Thus , we have a pleasing c losure o f ideas about con text in the

dema nd—based components of the CSA system as well as the spontaneous

components , and one which relates both to the general frames point of view.

3.1.2.2 Mechanics of SC Splitting

There are two questions concerning the manner in which splitting is to be

- i controlled , and the manner in which the split results are to be handled. We

- - are in the process of implementing some of the ideas about to be described ,

but the code included in the appendices does not reflect any of these ideas .

The easier question is: what ought the system to do with SCs which have

arisen via the splitting process? There are two obvious alternatives:

(1) plant them in a trigger tree

(2) send their patterns to a “curiosity queue”

Planting split and partially instantiated SCs in a trigger tree amounts to

cr eating a populat ion of specialists who will be geared to more specific

events in the arena than the SCs from which they arose.

If split SCs are planted in a separate tree, where ought the tree to be

accessed? Because the tree of split SCs represents a more special—case version

of certain SC5 in the original population , it would seem most reasonable to

-— - - ~~~~~~~~~ - - - -- ~~~~~~~ - -~~~~~

- : -~L . _
.—-

- - -
_ _ _ _ _ _ _ _ _ _ _ _

73

attach the new tree to a point on the same channel to which the original tree

is a t tached at a point before the original tree. In this manner the specialist
knowledge could have a crack at passing patterns first , blocking them on

successful activations so that the generalist knowledge need never see them.

3.1.3 Story Character Followers

In The Magic Grinder story which we have been using to focus our sto ry

comprehension research , there is a ver y natural app lication of thi s notion of

SC spl i t t ing that has to do with modeling the story characters.

As each character Is in t r oduced , or as each new char ac ter istic of a

cha racter is discovered , we propose to dangle the new features over the

population of SC generalists , then catch , split and Instantiate all the

nibblers to capture or refine the “frame” for the character whose features

have been nibbled at. Then we will plant the resulting split SCs in a tree

associated with the character . We imagine there to be a tree for each story

character , and we call the tree for each character a character follower.

Character follower trees will represent fragments of the generalist

knowledge which have been tuned to the idiosyncrasies of each character.

Beause of this, they can do a more efficient job in the role of spontaneous

inference (including predictions) where the character is concerned ; character

follower trees hence represent a significant form of search reduction in the

processes which will redict what any given character is likely to do, or how

he is likely to reac t to any given situation.

4 We will have more to say about the use of SCs as a partial basis of
I-

inference, but we will also argue that there is a large class of inference not

• appropriate to this paradigm.

3. 1.4 Curiosity Queues

-
- Planting split SCs in new trigger trees is a way of “subconsciously ’

J_

conditioning the system in a data—driven fashion. We use “subconsciously” here

in a f igura t ive sense to suggest that the resulting SCs, while more specific ,
become simp ly another component of the background of watchers. In this sense,

they contribute no additional motivation to the system.

-~~~~~-—

-
~~~

-
~~~~

- ---
~~-T~ ~~

-
~~~~~~~

- -
~~~~~~ - -  ~~=~~-~~~~~~~~~~~

-
~~~~

----— 
~~~~~

74

A cur iosity queue , on the other hand , will provide an alternative

receptacle for split SC5 that can be regarded as a focal point for more

“active” motivations of the system, those motivations which are not a priori

part of the model , but rather which arise because of curiosity about things
only partially revealed , say, in a story.

Suppose , rather than planting a split SC in a trigger tree, we place the

unfulfilled parts of its pattern on a queue which will be scanned -
-

periodically. Scanning will mean: attempt to answer the lingering questions on

the queue, calling upon the general powers of the system’s deduc tive - -

component. In this sense , items on the curiosity queue acquire an elevated

status of being actively sought. The queue will define a set of “problems ” by
which , say, the reader of a story is bothered .

We would argue that there is a very important distinction in theory

between this use of split SCs and the replanting technique. Because events in

the deductive process, and particularly partial evidence it may uncover , can
provide new fuel for still other parts of the SC component , the periodic scan

of the curiosity queue will be the origin of an important enriching cycle

between the deductive component and the SC component.

When to plant vs. when to send to the cur iosity queuc seems to be the

main question. One obvious idea is to send to the curiosity queue only those
split SCs which are almost completely triggered , while merely planting others

which are still rather tentative. Another idea would be to preview what the —

- - body of the SC would do if run , and if its potential contribution looked

especially relevant to the solution of some other problem on the queue ,

promote the split SC to the curiosity queue rather than interring it in a

trigger tree. Previewing would therefore be a technique wherein priority would

be given to those SCs with the most apparent promise for contributing to the

solution of some other problem. Previewing would require some restrictions on

the structure and semantics of SC bodies , or an independent precis (in the CSA • -

declarative representation) of what the SC would do if run .
—

We are presently contemplating how to implement SC splitting . Apparently,

the directives about when and how to split must be contained as features of

eac h SC , or possibly as features of the trigger tree which represents an

ent i re population of SCs. Current th inking Is to give each SC a SPLIT—ON

- - - --— —-~~~~-~~~~ -~~~~~~~~~ --~~~~ ~~~~~ -- - --.~~~ . - - -“---- ~~ - - -

~
- -

~~
- -

~
-
~~

75

condition which will name the components of the trigger pattern which must be

sat is f ied in order to spl i t . Clearly, there will be cases where any
combination of components which pass some criterion should instigate a spl i t ,

so our syntax will have to be rather flexible. Perhaps it will be necessary to

distinguish the conditions for splitting and planting from the conditions for

spl i t t ing and queuing. In any event , we will hope to discover techniques for
factoring the splitting directives out of the ind ividual SCs and into a more

cent ra l collection of heur istics.

SC spl i t t ing and its ramif icat ions are very f e r t i l e grounds. But rather
tha n progressing from half—baked ideas to quarter—baked ideas , we want now to

tu rn to some specific theoretical applications of spontaneous computation as a
pa radigm in cognitive models , par t icular ly those in the doma ins of language

:~ compr ehension and problem solving .

3.2 Spontaneous Computation as a Basis of Inference

Inference , as distinguished f rom deduction , is a process wherein new

knowledge , formed out of existing kn owledge , a rises without solicitation. In

ded uc t ion on the other han d , new knowledge also arises from existing

knowledge , but only a f t e r solicitat ion from some component of the system with
a specific need . Therefore , deduc t ion is goal—directed , or “ top—do wn ” ,

inference is data—directed , or “bottom—up ” .

In t he GSA model of the more goal—directed processes (described in [RI] ,

[R 2 1 and [R 3 J) , we hav e been concerned with a special class of inference

dealing wi th actions and knowled ge about cause and e f f ec t . We call knowledge
about cause and e f f e c t algorithmic knowledge, and therefore term inferences

which ar ise from this knowledge algorithmic inferences. We will want to make a

clear distinction in theory b etween this class of inference and the class for

which , we propose , SCs should serv e as a basis .

-
-

- • Algor ithm ic in fe rences , by d e f i nition , have to do with why actions are

performed in a given context and why actors desire certain conditions to be in
ef f ec t . The point of view is that purposeful actions are done for reasons

which can be inferred , g iven a r ich enough knowledge about cause and effect.

Similarly, the reasons why a potential actor might desire some condition to be

-
-

true nearly always relate to the enablement requirements of planned subsequent

-- --~~~~~~~~ ——- -- — - - - - ----—- - - - - C---

76

actions which will collectively lead to some final goal.

3.2.1 Algorithmic Inference

In [Ri], ER2] and (R3], we have argued that this teleological knowledge

is highly structured , and accessible in very orderly, “refereed” manners. In
brief , the process of algorithmic inference goes as follows: state S or action

— A is perceived to be (respectively) desired or performed by some actor; the

— system’s goal is to produce a context—sensitive explanation of this desire or

action.
-

in the CSA setting, there is a large number of relatively small

cause—effect schema , called abstract algorithms which describe specific ways
for causing states and statechanges to occur. The abstract algorithms are

organized into so—called causal selection networks, one network for each state

and statechange concept known to the system. For example , the re IS a

statechange LOCATION network which serves as the organizing structure for

thou sands of (in principle , not in the running model!) strategies for changing

the location of various types of objects from a starting point to a terminal

point . Clearly, the str ategy will be dependent on both the obj ects and places

involved in the statechange of location , who it is that will be effecting the

strategy , and a general awareness of the context in which the strategy will be

effected . It is the purpose of a causal selection network to ask an orderly

progression of questions to illuminate as much of the relevant information as

required about the situation so that an intelligent selection of one strategy

from among the large number of contenders which may exist at the terminals of

the selection network can be made.

The causal selection networks therefore carry out the theoretical point

of view that intelligent selection from among a collecticm of known

alternatives is a primary aspect of human int”llectual abilities.

But if the system has an algorithmic base of thousands of cause—effect

schema, each tuned to a small part of the world , we can also confer upon it
the reverse ability to determine of any given state or action, X, where X

could conceivably participate in cause—effect strategies. Knowing where X

could participate , it is then possible to trace upwards (backwards) through

layers of CSA patterns and causal selection networks from the set of starting

— ----- ~~~
- - - -

-
-

77

points (s trategies) in which K might be part icipating. By app lying the

questions in the network as this upward climbing occurs, it seems to be

possible to rule out most possible “interpretat ion paths” quickly, because of

fa i lu res of the s i tuat ion In which X part icipates to agree with the tests in

the network. (This is described in more detail in [R2].)

The f ina l interpre ta t ion , i.e., the algorithmic inference , f rom X is that

path (or collection of paths) which survive long enough to connect up with a

prediction ** which has been made concerning the actor associated with desire

or action X.

** The CSA system’s predictions at any given moment have been derived
from other CSA patterns , primarily ones involving the so—called inducement and
motivation links. These are described in [R3J.

We propose that this type of inference , inasmuch as it interacts with a

highly structured knowledge about cause and effect , ought not to be modeled by

spontaneous computation . Without the tremendous search— restricting and

mediat ing influence of the causal selection networks , the system would exploth~
combinatorially with possible interpretations of actions and desires in

context. Fundamentally, SCs are local entities which are independent of -

one—another. They are inherently resistant to organization into the kinds of

larger structures which seem to be appropriate for cause and effect knowledge ,

and we believe that it would be incorrect to attempt to cast them in this mold

by building “spontaneous computation selection networks”. SCs are simply not

intended to be selected among, and are hence intrinsically ill—suited for

algorithmic inference.

3.2 .2 N on—Al~ or ithm ic Infer ence

—
- -

What othe r types of inference are there a f t e r we eliminate cause—effec t

based inference? Clearly, a lot! But it is very difficult to characterize

—
-

under any one banner what is l e f t over. Common to all rema ining types ,

howeve r , wi ll be a charac te r i s t i c absence of in tent ional i ty . We feel that i t

— is to th is residue of non—volit ional inference types that SC—based inference

ought to be l imi t ed . . • to actionless s i tua t ions , “se t t ings” , which convey

~~~~~~~~ -.--.-~~~~~~~~--—



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -

78

information via state descriptions which have not been purposefully caused by

actors. This will embrace things like descriptions of characters in stories ,
scenes laying out spatial or emotional relationships , patte rns delimiting how

a sto ry char acter might be expected to behave in general situations, and so

forth. In other words , SC—ba sed inference ought only to deal with

non—purposeful aggregates of states which are the way they are for no

particular reason, but which nevertheless will represent an often rich basis

f o r inference.

3.3 Spontaneous Computat ion in a Plan Synthesizer

3.3.1 SCs as Models of CSA Tendencies

In the CSA model , the re are five theoretical types of events: actions ,
states , statechanges , wan ts , and tendencies [R i] . A tendency is def ined to be

an action—like event , in the sense that it causes new states and statechanges ,
but an event in which there is no animate actor. A tendency is therefo re

non—intentional force which must occur whenever its set of enabling conditions

occurs.

For example, our commonsense notion of gravity tells us that whenever an

object X is in an unsupported state and close to a very large mass, it will

begin changing its location from where it is toward the large mass. In CSA

syntax, we write this as follows:

- I

_ _ _ _

TENDENCY
-

STATE

— ~~~~UPP~~TED
J

H STATE

STATECHANG E ~~~~~~~~~~~
AI

~~SNEAR~~~~

j

Display 82. Commonsense Gravity

CSA distinguishes the notions of enablement and gatthg . An enablement is
a condition (state) which must be in effect in order for an ac tion to proceed ,

regardless of what the action is intended to accomplish . For example, if one

- r. wishes to p i c k up an object , he might grasp after having ensured that his hand

is hovering around the object he intends to pick up. In this situation ,

regardless of whether or not the gating s ta te (A ROUND (h AN D P) OBJECT) has

beeii satisfied , in order for the action GRASP even to begin , the enabling

condit ion

(M OBILE (FINGERS (IIAN D P)))

Disp lay 83.

must be true , and must remain true for the durat ion of the GRASP movement.

Enablements therefore are associated with the context—free requirements of

actions in isolation , while gates describe the context in which the action

must be pe rformed in order to achieve some desired result .

There is an equall y na tura l division of enablements and gates in CSA

tendencies. The enabling conditions for a tendency, T, are those states which

~t s t be true in order for I to exist. For gravity, we adopt the view that this

-

~

--

~

-- -

~ -

~
~~~~~~~~~~~~~~~~~~~~

80

force simply does not exist wi th resp~~~ to some object unless that object is

close to a large gravity—produc ing mass. (This is the commonsense notion

only!) Hence, even if an object is unsupported , unless it is near a large

mass , nothing will happen because the tendency of commonsense gravity simply
does not exist for that object. Gates on tendencies’ causal l inks on the other

hand specify what context must be in effect when there is coinmonsense gravity

in order for gravity to produce the result of moving the object.

This separation of enablements from gates in the CSA theory meshes

naturally with the notions of spontaneous computations we have been developing

in this paper. Roughl y speaking , every tendency is a purely associative, or

state—based inference which we are obligated to make whenever we can. Thus for

examp le , we may model the tendency COMNONSENSE—GRAVITY by an SC whose tr igger

pa ttern mig h t appear as:

(AN D (+ 1 (DISTANCE —x EARTH ORDER HILES ))

(+ 1 (UNSUPPORTED —K)))

Disp lay 84.

But somehow , the two conditions of Display 84 do not have equal status;

the support status of an object is, conceptually at least , far more apt to

vary than the object’s distance from EARTH , and besides, the d istance from
earth governs gravity’s existence (with respect to that object), whereas

support relations govern its effects. Since the GSA theory categorizes these

two conditions differently ,  why not reflect this in the SC implementat ion of

gravity?

We can do so by re taining onl y the second condition about unsupportedness

as the SC’s trigger pattern , and placing the SC itself in a tree which models - - -

an entire population of SCs which share the DISTANCE condition as an existence

L-rahlement . Then , by turning the entire tree on and off on the basis of

~rin w1edge about our distance to the earth , we will be able to model

1-~rge—scale shifts in context (e.g., leaving the earth’s influence) quite

- -‘p ur ally.

-1
__________________________________________________________________________



— 

~~~~ — ---~~--~--,~ —--—-k _ - . 
~
.-

~~~~~~~~~~~~~~~~~~~~~~ —--‘----------—-- ‘------—.-—,-—- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
;—__ ~~~~

81

We therefore imagine populations of tendencies modeled by trees of SCs. A

tendency ’s inclusion in a popula tion is a f unc tion of the tendency ’s
enablements , while the tendency ’s trigger pattern within the tree is derived

from its gate conditions. In this setting , there mig ht be some SCs whose sole

job would be to tu rn on and of f en tire trees of tendenc ies on the bas is of

- : large scale context changes which arise, say, as the result of execut ing a

plan , or as the result of entering ~omc hypothetical context during the course

of synthesizing a plan to solve some problem .

3.3.2 SC—based Tendencies as Synthesizer Interrupts

-
- Th ere arc several in teres ting ways such popula tions of tendenc ies can

interact with a problem solver. One obvious way is as a kind of bookkeeper;

when the plan synthesizer ungrasps an object in mid—air , some tendency should
arise and inform the synthesizer that the object is now In a state of motion

toward the ground . Another computation might then be awakened to compute its

expec ted trajectory and landing point. The synthesizer , meanwh ile , may e ither

have dec ided to alter its plan in a way whic h would disable the (undesired)

—
- tcrdency by ungrasping the object only after ensuring the object was first

supported . Or the synthesizer may dec ide to ignore the falling condition . In

that case, should the object be required later , the database will at least

contain a prediction about where the object might have gone (i.e. landed).

Clearly, there are tendencies which are not exclusively physical in

nature; there are emotional and social tendencies as well. We are currently

pondering the relationship be tween GSA patterns which involve the so—called

inducement link and non—algorithmic inference. For example , suppose we wish to

express the emotional pr inciple: if X sees Y kiss Z, someone K loves , K is

liable to feel jealousy toward Y. CSA provides the expressive declarative

p wer w~- need :

‘~~~~~~~~~~~~

~~~~~~~~~~~~~

82

ACTION [KISS -Y -zJ

INDUCES ~~~~~~~~~[LovEs -x

/ STATE

I EFEEL -X 1 -

STATE LJEALOUSY 
~~~~~~~j

Display 85. How to induce jealousy.

-

-
In an operational sense, this piece of knowledge is highly algorithmic ,

even though it deals with (unexplainable?) human emotions: if John wants to
make Bill jealous, one stra tegy might be to find someone Bill loves, then kiss

her In front of John. On the other hand , there is a good case for regarding

this pa ttern as a tendency, since , on another occasion it migh t no t be

intentional at all, bu t some thing tha t happens by chance.

Ac tuall y all tendenc ies are like this inducement pattern , in tha t they

can play either a goal—directed role or a spontaneous role. For example, there

are times when we may wish to regard gravity algorithmically by consciously

employing it as the top—level strategy for moving an object, and there are

times when we would want it to arise associatively. Because of this, our
inclination now is to regard patterns like this , and indeed , all tendencies as

both algorithmic and spontaneous. In the current plan , tendencies and
inducement patterns will be integrated into both components of the system:

they will be stored as terminals of causal selection networks, and they will
be planted as SCs in trigger trees. Although there is still some ambient

confusion here , we feel that the dual role approach is inescapable.

3.3.3 Subgoal Protection

When confronted with a goal , the CSA p lan syn thesizer (1) accesses the

causal select ion network associated with the predicate used to express the

- - - - - -------------

~

- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-



83

goal, (2) descends downward through the net , asking questions about the nature

of the goal and about the environment , following the path prescribed by the

answers to these questions, then (3) adopts the strategy specified by the CSA

pattern it has located at the net ’s terminal node. Adopting a strategy means

(a) instantiating the pattern schema with the particulars of the goal it is to

solve, (b) committing to particular things (these are the hammers, cups ,

verbal phrases , etc.)  that  will be required in order to carry out the

• strategy... the components of the strategy introduced by adopting the

strategy. Finally , the synthesizer (4) solves any unmet subgoals in the

strategy via recursive calls t itself.

Ofte n , it will happen that subgoals are not compatible , or at least

incompatible with respect to some particular ways of solving them. Thus , as

t it has been recognized for some time now, there is the danger of a purely

recurs ive plan synthesizer first solving a subgoal , bu t in the syn thes is of

the next subgoal , doing something that would destroy the effects presumed to

hav e been achieved b y the f i r st sub goal’s solution. Since subgoals are states

of the world which us ually must be lfl effect simultaneously at plan execu tion

time , if solving one des troys ano ther , the plan s imply won’t work. Sussman

has called this problem “prerequisite clobbers brother goal”, and it was

prec isely this problem which motivated much of his dissertation research [Si].

We will r e f e r  to this pr oblem as “subgoal annihilation ” [Li].

Subgoal annihilation may happen for one of two reasons: either the CSA

pattern the synthesizer has adopted as a strategy is conceptually fau l ty

(e.g., it may have been incorrec tly learned , or may have been learned and

works for one case, but not for another), or , the pattern is not conceptually

faulty, but the ways the syn thes izer has gone abou t solv ing the subgoals are

antagonistic to each other.

In the former case, restructuring of the strategy pattern itself is

called for (London [Li] is working on this problem in the context of the CSA

system); in the latter case, retrying the synthesis of the subgoal , this time

avoiding problem spots (and noting them for the future), is called for .

The CSA group is just beginning to address these problems beyond what

Sussman did , and we have no firm ideas yet. Nevertheless, the SC component of

J 

the GSA system is presently capable at least of detecting subgoal annihilation

—— —— -- -- - - S—-- ~~~~~~~~~ .~~~~~‘ s~-~n~



- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

84

in the following manner. As each subgoal is addressed and solved , the CSA

synthesizer “protects” it by creating an SC which will scream and jump up and
down in reaction to other patterns generated by the synthesizer which are

inimical to the protected subgoal. Currently, this amounts simply to watching

for the erasure of the subgoal which has been imagined to have been solved

(and hence stored as a fact in the hypothetical context in which the

corresponding level of synthesis occurred). However , the protect pattern could

(and should) be made sensitive to a broader spectrum of inimical patterns

within the existing SC framework (e.g. via OR conditions in the protecting

-
- SC’s trigger pattern). -

-:
When all subgoals have been successfully solved , their protecting SCs are

destroyed , any actions which the subgoals are intended to enable or gate are

added to the execution run stream being generated , then the current level is

assumed to have been solved . At a higher level, an SC will be created to

protect this goal for as long as necessary, and so on, until the original

problem has been solved.

3.3.4 SCs as Constraint Violation Interrupts

As the plan synthesizer gets deeper and deeper into some plan , it will

create more and more SCs to protect subgoals. This amounts to a growing

minef ield of constraints. Although such constraints arise for the purpose of

protecting subgoals, it is possible to interpret them in another fruitful way .

For example, suppose the synthesizer has generated a plan wherein AGENT

grasps an immovable object, effectively tethering himself to within a small

neighborhood of the immovable object. Suppose then that the next subgoal

involves moving across the room , out of the tether range.

-
- - At that point , one of two things could happen : either the synthesizer

could be aware that AGENT was grasping the immovable object , and attempt to

have AGENT ungrasp it (probably leading to a subgoal annihilation complaint

from the protecting SC), or it could have AGENT simply proceed with the ~NALK

plan to move across the room.

Now , if at the time the GRASP had been achieved and pro tected , another SC

had also been planted with a pattern which would react whenever AGENT moved

~~~~~~~~~~~~~~~~~~~~~~~~



~~~
- -
~~~

----—-
~~~

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

k

85

out of the tethered range, as the WALK plan was generated , this SC could

- - inform the synthesizer that it had just violated a constraint.

Detecting such a constraint violation is important for two reasons.

First, it will alert the synthesizer that it is generating a faulty plan. But

second , and perhaps more important, it can provide the synthesizer with a
situation in which it may be able to learn something. In this example, what

might be learned is that whenever a statechange in location of self is being

planned the synthesizer should first ask whether or not AGENT is tethered to

an immovable object. If the answer is “yes”, it should employ a strategy that

includes detaching AGENT from the object before solving the statechange in

location.

In the GSA system such an act of learning would amount to implanting a

new test in the causal selection network for causing statechanges in location

(described in [R21). By planting a test about “tetheredness”, the system, in a

very important sense, extends its conception of what is relevant to the

successful solution of statechanges in LOCATION.**

** It might seem alarming to force the system into having to ask “is
- - AGENT tethered to an immovable object” every time it wishes t~~~ synthesize a

plan for moving . However , because the CSA causal selection networks have an
ability to bypass port ions of themselves (described in [R 2)) , such a question
need be asked only once for any given agent. Because of the bypass wh ich
becomes implanted , the question will not be seen as par t of the network fr.im
that point until some grasp of an immovable object actually occurs. At that —

time , the bypass would be destroyed , making the statechange LOCATION causal
selection network once again sensitive to “tetheredness”. Thus, although the
system has learned that tetheredness is a factor in location changes, it will
not have “con sciously ” to th in k “ is AGENT tethe red to an immovable object ”
every time it generates a plan for AGENT!.

Another related class of constraint violation is typified by “the hand in

the gumball machine” dilemma : a kid wishes to remove a prized object from a

container with a small opening. The opening is just large enoug h to admit a
limp hand , bu t is too small for a f i s t, or a “fat” hand to pass through. The

kid , employing the standard grasp strategy , will experience a constraint

violation (in this case , at run time) when he attempts to remove his grasping

fist from the container; namely , he will realize that his fist is stuck! Fr om

this violation , he might be able to learn two interesting principles : (a) that

a side—effect (byproduct in CSA terms) of a GRASP action is that the hand

_____ -- -

~~~~~~
7i- 

- -- 

~~~~~~~~~~ ~~~
-
~~~~

----
~~

-
~~ ~~~~~~ T~~~~:~~~~~~~~~~~~ 

- - -

86

becomes “fat”, something that may never have occurred to the kid before , and

(b) that whenever he is about to synthesize a plan to change the location of

his hand (on a path through an opening), he should first ask whether or not he

will have satisfied the important enabling condition for the move: HAND will
fit through the opening! (a) will amount to learning a new piece of causal

information, in the sense that it augments an existing CSA pattern about

grasping. (b) will amount to learning that a precondition for moving a hand is

that the enablement “hand fits through constrained places on the trajecto ry ” .

3.3.5 SCs as Plan Optimizers -

If we are concerned only with synthesizing plans which are execution—time

consistent, but which are not necessarily conservative of materials, time or

energy, there need be little cross—communication among the synthesizer calls

for the various subgoals of a main goal. In this setting , it may just happen

that the leftover products of one subgoal’s solution will aid in the solution

of the next subgoal. But in general such interactions will be coincidental. It

would clearly be more desirable to build some notion of optimization into the

control of the synthesizer.

SCs can be put to use as optimizers by a technique we call previewing.

If , as it commits itself to a top—level strategy via traversing a causal

selection network, the synthesizer “peeks ahead” a level or two to preview

— j what subgoals will eventually require solutions , it can create SCs to watch

for patterns which would in some way be of use to the solution of each

previewed subgoal.

Typically, useful patterns will be those describing states which could

serve as enabling or gating conditions for an action whose execution was

anticipated. For example, suppose the synthesizer previews and determines

that it will eventually have to synthesize a plan wherein the light switch on

— the wall is turned off. By, say , a one—level preview, it might determine that

among others, one enabling condition for such an action is that AGENT be near
the switch. If before it begins solving any other subgoals, the synthesizer

creates an SC to monitor for the condition “AGENT is near the switch”, then

any subgoal whose solution incidentally brings AGENT near the switch will

trigger the optimizing SC.

-

~ 

- —  
—

~~~~~~~~~~~~~~
--- - _~4

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ - -
~

-
~~~~~

— 87

The optimizing SC could then interrupt the synthesizer, informing it

that , since it was in the neighborhood , it might consider solving the rest of

the switch—off problem. The synthesizer could then either reject the

suggestion , o r do it , running the obvious risk of annihilating some other

condition prematurel y (e.g., the subgoal whose solution was interrupte’~
requires light in the room in order to proceed). But presumably such

annihilations arc being monitored by subgoal protectors who would complain at

still another interrupt level , and so forth.**

** There is a question about whether this type of optimization belongs in
the conceptual planning stage of plan synthesis, or in the execution phase. In
the execut ion phase, the optimization would occur over an action sequence
rather than by the previewing mechanism called for in the synthesis phase. The
problem is analogous to the problem of whether an optimizing compiler should
do its optimizing at the code generation level (or at a still higher
algorithmic level), or simply shuffle the code around after it has been
genQrat~d , without regard for the semantics of the situation 4ithQugh we have
no tinal arguments In its tavor , we are biased toward optimization at the
conceptual synthesis level.

3.4 SCs as Hierarchical Situation Characterizers

It is natural to think of SC5 in terms of numerous populations, each

population tuned either to specific facets of the environment , to specific

contexts , or to specific levels of resolution. In other words , SCs can be

s t ructured and put to use hierarchically. They can be regarded either as

data—driven or as goal—driven , because of the way they interact with the

deductive components of the system during the polling process.

Hierarchically structured populations of SCs can be put to use in

interesting ways to convert context—free information at the data level into

progressively higher , more semantic and context—dependent assessments of a

situation. Consider a chess game . Context—free information in a chess game

presumably has forms such as: “PAWNI is attacking KNIGHT2”, “ROOK2 is n ot in

immediate danger”, “QUEEN has the following three moves”, and so forth. The

context free information is that which can be gathered on a very local and

mechanical , piece by piece basis, with no regard for its contextual

implications.

We now imagine a population of SCs whose job it is simply to watch this

~

----

~

-

~

- - -

~

—-— -- --  —- ---~-- ——— —-~~~- --— — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



88

level of characterization. The trigger pattern of a typical SC in this

1iopulatio n will be a mixture of context—free parts and more semantic and
contextual parts, perhaps things like “does the bishop play a role in

constraining the opponent’s rook?” Now , when the SC triggers on the basis of

ve ry syn tactic in fo rmation , it will (via the polling process) pose the as yet
unanswe red semantic and contextual questions in its trigger pattern to the

deductive component of the system.

The deductive component , being fishbowled by yet other SCs, will pose a

new generation of questions designed to answer this question, possibly giving

rise to new SC invocations. Thus, regardless of the answer’s outcome , the very

fact that the original SC posed the question can give rise to an upward

spiraling of more semantic awarenesses about what is happening on the board.

At another higher level, we would imagine there to be more abstract SCs

designed to react to lines of constraint , lines of force, mounds of power, or

whatever. Presumably, these top level characterizers would correspond closely

with the concepts a chess expert employs.

This deceptively simple notion — mixing the syntactic with the semantic

and contextual in SC triggr patterns — seems to be the key to many problems of

context . It provides the system with a starting point at which to begin

— making semantic conjectures; these conjectures , whether or not they prove to

be true, can be important catalysts for higher level SCs via questions sought

during the deductive processes. In this sense, SCs provide a significant

source of “upward awarenesses” which at some point hopefully make contact with

the strategy, algorithmic , or goal—directed levels of the system.

3.5 Other possible arenas

in this paper , we have considered only one of many possible arenas for

spontaneous computation : LISP S—expressions moving from logical point to
logical point in a model. Clearly there are many other arenas. Two notable

ones at which we wil l  take a brief look have to do more with control than with
data . The first idea belongs to the LISP machine group [Gi] and the KRL group

[BW1], and the KRL group calls it procedural attachment. The second idea has

to do with spontaneous computation which is triggered on the state of control

rather than on the state oL. data. 

- _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



____ 
- T ~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

89

3.5.1 Procedural Attachment

- I Procedural attachment (PA) factors the problem of SC quite a bit

differentl y from the way we have been viewing it. In PA , code is triggered by

the act of referenc ing an entity in the model. h ost generally, “reference”

could encompass any act of attaching , detaching , or inspecting information

~~ associated with an entity in the system; it could mean “the address of the

entity appears in an active register (accumulator) of the computer ”. In a

LISP machine (hardware) style of PA, reference means, e.g., taking th e CAR or

CDR of a cell, or chang ing the CAR or CDR of a cell, or requesting the

functional definition of an atom . In the KRL use of the concept , PA Is a way

of factoring intelligence out of code which manipulates objects and into the

objects the code manipulates. For example , if there are numerous logical

types of entities in the system , each requiring a different sty le of

formatting when printed out via a LISP PRINT , rather than coding into PRIt~T a

knowledge of all the various formats , each object type bears knowledge about

how to behave when it becomes involved in a PRIIST operation. In other words ,

printing an entity becomes as simple as pointing at the object to be printed

and say ing PRINT YOURSELF!

There arc some interesting possibilities for PA. It represents a sort f

distributed SC. It is a style oi~ SC in which each object in the model can be

given a priori expectat ions about the larger events in the system in which it

might partic ipate. Because PA distributes intelligence , it is perhaps modular

in the way we imagine the human brain to be.

One possibility would be to move from the simple PA concept of reference

to a more sophisticated concept of “occurrence in a pattern ”. In this type of

PA triggering , a referenced entity ’s attached code would run only when the

• entity occurred in some special role in some larger pattern. But SURPRISE!

This brings us back to the style of SC we have already considered. In fact , if

we have PRINT “point at” an object by placing a request (PRINT ‘~obj>) on some

channel , we can couch the whole notion of PA in our style of SC.

3.5.2 State of Control Triggered SC

In state of control (SOC) triggering, we specify callin~ seguenc-s (i.e.

configurations of LISP ’s con t rol and value stacks) which are of interest; —

4

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~~~~~~~~~~~~~~~~~~~~~ TT~~~~~~~~~~~~~~

90

whenever such a calling sequence occurs, the system will be interrupted and

the code associated with the SOC SC run. An example would be: interrupt the

system whenever function GLOP calls function FOO with a second argument that

meets criterion X, and FOO then calls BAZ.

London has implemented such a scheme that permits one to specify an

arbitrary number of such SOC patterns. London employs the notion of a “call
-, tree” to keep track of partial SOC activations. (The approach is a •

generalization of the MACLISP “wherein” debugging feature.) Current plans call

for using this SOC component in his research in learning; the LISP control

which occurs as the base CSA model operates will be monitored by SOC SC’s who

• 4 will notice when interesting or unexpected calling sequences occur, interrupt ,

rummage through the control and value stacks to try to determine what was

happening , and then... The suspense is exciting.

Ii

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - 
—~~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— -~



91

4. CONCLUSION

There are no conclusions yet. We are beginning to explore ways to use SC

in story comprehension and problem solving. All we know now is that SC

underlies quite a few interesting processes of intelligence. How, where, and
when it interacts with goal—directed computation are still mysterious, but

hopefully not as mysterious as before .

1-:

~~ .-~~~
- - _____



-~ r—— ’~ -~ - --~ -- ~~~~ —
~- -

~~~~~~~~~

92

-
— REFERENCE S

[BW1] Bobrow, D., and Winograd , T., An Overview of KRL, a Knowledge
Representat ion Language, Xerox Palo Alto Research Center , 1976

[Cl] Charniak, H., Toward a Model of Children’s Story Comprehension ,
doctoral dissertation , M.I.T. Al Memo 266, 1972

[Dl] Davies, D. J. M., Poplar 1.5 Reference Manual, University of Edinburgh ,
TPU Report No. 1, 1973

[DKI] Davis R. and King , J., An Overview of Productions Systems, Stanford
All-I 2~ 1, ~975

EG1 J Greenblatt , R., et. al., The LISP Machine, M.I.T. -Working Paper, 1975

[111] Hewitt , C., Procedural Embedding of Knowledge in PLANNER, Proc. 2IJCAI,
London , Sept. 1971

• [112 1 Hewitt , C., Viewing Control Structures as Patterns of Passing Messages,
M.I.T. Al Working Paper 92, 1976

[Ki] Knuth , D., The Art of Computer Programming, Fundamental Algorithms
(Vol. 1), A~~Ts~irWeTTey, r9/i

[LI] London , P., Abstraction Mapping and Learning in a Problem Solving
Environment , doctoral dissertation proposal, University of Maryland ,

[Ml] Marcus, M., Wait—and—See Strategies for Parsing Natural Language,
M.I.T. Al Working Paper 75, 1974

[h—12] McDermott, D., Very Large PLANNER—like Data Bases, M.I.T. Al h-lemo 339,
1975

[M3J t-Iinsky, M., A Framework for Representing Knowledge , in The Psychology
of Computer Vision, P. Winston (ed.), McGraw Hill, 1975 — _________

[hIS1] McDermott, D., and Sussman, C., The CONNIVER Reference Manual , M.I.T.
- ~- Al Memo 259a, 1974

[NSI] Newell, A., and Simon, H., Human Problem Solving, Prentice—Hall , 1972

[Ri] Rieger , C., The Commonsense Algorithm as a Basis for Computer Models of
Human Memory , Inference , Belief and Contextual Language ComprehenF ion ,
Proc. Theoretical Issues in Natural Language Processing Workshop,
M.I.T., 1975

[R21 Rieger, C., An Organization of Knowledge for Problem Solving and
Language Comprehension , Artificial Intelligence, vol. 7, no. 2, 1976

[1131 Rieger , C., The Representation and Selection of Commonsense Knowledge
for Natural Language Comprehension , Proc. Georgetown University
Linguistics Rcundtable , 1976

[R4] Rulifson, J., et. al. QA4, A Language for Writing Problem—solving
Programs, Proc. IFIP âongress, 1968

IRCI] Rieger , C., and Grinbcrg M., The CSA Mechanisms Simulation System ,
University of Maryland T~ (forthcoming), 197 6

[REl) Reboh , R., and Sacerdoti , E., A Preliminary QLISP Manual , SRI Al Center
Tech. Note 81 , 1973

[Si] Sussinan, G. A Computational Model of Skill Acquisition, American
Elsevier , l~~T5 —

(SSI] Sussman , G., and Stallman , R., Heuristic Techniques in Computer Aided

~

‘,“~~~~ ~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~~~~ -• - —. •~~~
---,-

~~~ 
‘

~~~~~~~~~

_ _.

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
- - - - - - •

93

Circuit Analysis, M.I.T. Al Memo 328, 1975

ESWC1 ] Sussman, C., Winograd , T. and Charniak, E., MICRO—PLANNER Reference
Manual, M.I. . Al Memo 2O~a, 1971

[Ti] Teitleman W., Interlisp Reference Manual , Xerox Palo Alto Research
Center , l~ 74

[T2] Tesler, 1. et. al., The Lisp7O Pattern Matching System, Proc. 3IJCAI ,
Stanford , ia., 1973

I

a.~. i~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~~
-
~~~~~~~~—~~~ ---


*use 012 MAKYLANU UNIV COLLLSt P*RK ULPI OF COMPUT (R SCILNCE PTh 12/I

L$ICLASSIFIED

SPONT*N:ouS COMPUTATION IN COGNITIVE MODELS. (U)
N0002*—76—C—0fl7

AU
0 A As ia

•
END

___ ______________________ D A T E

FILME D

~~77

II

I f% ~~ 12.8 12.5
I. U L

_ _ _

L L 12.2

Ii LL II~H~I.8
IHII~~~

1.25 1.4 III 1.6
—

~
III

MICROCOPY RESOLUTION TEST CHART
NATIONAL SUNEAU Of STANOA NOS—11S0 A

~21~~1~t~~ .~~ .~~~~ ~~~~

(t ~ IFLP: i M A K E — S C — V A R OA 1H)
($~~A kE—CS~~— VAk (CONS X (RI V I ~ Sf P A T H))))

(o ruM tP1A~~I1 (P T R E E P A T H V A k S)
((O N S

(C O N D ((A T O M P)
(C (~ :D ((! 1 S — C ~~’.— V r c P)

(~~~ A p ~E — V t . ~ (C ONP ((C D P A ~~~Oc P V A R S))
(1 ~i~U S t ~ (LO ~~ (SH A K E — S C — V A R P A T H))

V Vi k
::SC— FR IE—V AR))

T R E E P A T H))
CT (~~~A K L— CC NS T r 1r~~1))))(1 (5(10 T R E E (~~MAKE ~~C O~~P1F X (LFNGTH P) T R E E))

(MA R C— N (L~~~1~~~bA (P A i T r (~5)(~~ L1i T R E E (~~F ’ L A h T l PA ~~T T R E E (CONS P05 PAT H) V A R S))
(~~~T0 VA R~ (C t ~k IR E F))
(~~ET ’ I T R E E (C i~~ i N F o))

P (!1 ‘Z~ !3 !(!~ !~ ‘7 !8 ‘9))
1~’E t))

VA N S))

(D~~EU~: SLO CA T E (PAT 1E~~’i TREE) t
CA~,D (CSEIQ ::11 (SLOCA TE1 PATTFR ~’ T REE t.1L NIL)) (CAR ::T1)))

I
(D tFu~ ILOCAII1 (P T R E E P~~T’1 V A P S)

C COND ((C S E T ’ ~ :11
(CO N 0 ((A T O ~ I’)

(C OND ((~~1 S — C S A — V A R P)
(C O R A S S O C (CO P4~ C (C D R A S S O C P VAR S))

C T (P U S H (C O N S P (S M A K E - S C — V A R P A T H))
V A N S)
: : S C — F Q L F — V A ~~))

(S V A N ~~—~’f TREE)))
CT C D~~~SSCC P (~~~o~.ST—O r i~~Eo)))))((SLID TREE (CDRA SSOC (LE’~~ TH P) (~~C(Y~’PLFX—O F T R E E)))

(PR OC~ ((P05 (!1 ‘2 !3 !6 ‘5 !~~ !7 !i !9)))
LOOP (COND ((NULL (SETG TREE (SLOfLAT (1 (CAR P) T R E E

(EONS (CAR P05) PATH) VARS)))
(PEItIRN i~IL)))(5(10 VA N S (CDv , 1”LF)) (SOlO T~~FE (CAR T R E E))

(CONL ~ ((5(10 P C C r h P)) (S L I D E ’ S (C O R P O S))
(G O LOOP))

(T (RFTUf ~ : IRrE)))))CT P~IL)))(CONS ::11 VAPS)) CT NIL)))

(
~

(FUN SP~A K (_ C C M I LLX (LEN TREE)
(COM b ((CDF .A SSC C LI P . (~~CC)~’rLiV ~~~F IR(E)))(1 (I, r~LA C A (C~~r~R T R ~~() (C r i ~~ (CONS LEN

CCS ITQ ::T1 (SSPROUT TREE)))
(CADDN T R E I)))

(C ~tTQ : ~SC— F~~i (—VAR 1 ~~ F)

(DE 1tJ t~ i .ChNST— ~1F MAC NO Cx) (LIST cArs x))
(~ L!~V~ ~VA k!.~~OI M A C R O Lx) (1351 AND (LIST C A 1~P x)(L I S T CD~~DR x)))
(t ~~~~ I C e c L t x — O F M A C R O Cx) (1151 C A D D R x))
CD I F t ’ H iPOS— Ol ~ A C ~O (I Ct~ SI r~ x I)

L _
_ _— -‘.. -—~~—,.-_ - .—.‘ .-

~~~~~
- .

L__________ 
_ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _~~~~~~~~~~~~~~~~~~ ~~~~~~~~~-~--~ ——- ~~~~~~~~~ .

~ _~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ .. .



~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~
. 

.

. 

.

(DLI 1~’ S PARE NT— OF MACRO Cx ) (LIST C000R x))
(O L F~J~ sscs—or AC~~o Cx )  (L~~~T ~CDD P xfl(DL ru ~, ~N—1 UPL [-OF MACRO (GUERY) (LIST CADDR QUERY))

( D I F L N  ~tM AKE —C Gt J S1 (CONSI TREE )
(COM b ((CDRA 55 .~C COMSI (~.CONS1—CF T kLE )))

(1 (R PLACA TREE (CC’~S (CONS CCN~~I (CSLTO ::I1 ~~ SPROUT TREE )))
(CAR TREE)))

CD (FUN SSPROUT (TREE ) (CONS NIL (CONS r.II.. (CONS NIL TREE))))

(D&FUN INA KE—V A R (VA R TRE E PATh )
(CON~ ((AND (MULL CC A C R  TREE ))

(RE LACA (COP TREE) (LIST (SMAK E~~5C_ VA R PATH )))
NIL ) )

((CDRASSO ( VA R (SVA RS—O f TREE)))
CT (R P L A C D  (C~~DR TREE ) (CONS (CO ~~ V A R

(CSETQ ::l1 CSSPROUT TREE ))) I’
(CDADR TREE)))

::T1)))

(0  (FU N SN ILsI3 LER S (P TREE B I N D S )
(A PPE N D

( C O L L E C T  ( S V A P S — O F  T R E E )
( L A M B D A  C V )  ( C Or ~D ( ~~ 0 ( C A R  V )  : : S C — F R ( E — V A P )

( C O N S  ( C O R  V )
( C O N S  ( C O N S  ( I P O S — O l  T R E E )  p) D I N D S ) ) )

( ( E O U A L  ( C D R A S S O C  ( C A R  V )  B I N D S)  P)
( C O N S  ( C D R V) L 1 N D ~~))(I NIL))))

(CO Mb ( ( A T O M  p)
(COND C ( C S E T Q  ::T1 ( A S S O C  P ( S C O N S I —O F T R E E ) ) )

( L I S T  (CO N S ( C O P  ::T1)  B I N CS ) ) )
(1 k IL) ) )

((CSETQ ::11 (ASSOC (L1t~GTH P) ~~C cMP L Lx— O r TREE )))
(PROG ((AMOS) (SFTc ~ CAN DS (LIST (EONS (COP ::T1) BINDS)))

LOOP (SLID CA NDS
(iNDEX (INTO CAN DS (LAML DA (C)

(7N1BDLFR$ (CAR P) (CAR C) (CDR C))))
N iL A P P E N D ) )

(CO Mb ( (NULL C A P 4 D S )  ( R E T U R N  N IL) )
((5(10 P (CON P)) (GO LOOP))
CT (RETURN CANDS)))))

CT N I L) ) ) )

( D E FU M S S H O W  F E X P P  ( T R E E )  C S S H O ~~1 (56(1 TREE 1R11) 0 NIL) )
CD (FUN S S u O W l  ( T R E E  IN POS )  f t(COM b ( U IS— S C — L 1S I  T R E E )  .

( M A P C  ( 3 S C S — O F  T R E E )
( LA r t 3 D A  C D )  ( IN DENT IN) ( PO INT D) ) ) )

CT C M A P C — N  ( L A M B D A  ( P A R T  H A P I D E E P )
(MARC PART (LAM &DA (PAIR)

(I N D E NT  IN)
(PRINT (IVA L HAND IER))
( ! S H O W 1  (CON P A I R )  . 

P

(PLUS IN 3) NiL) ) ) )
(L IST ( C A R  T R E E )  (COP I O ( ( C A D R  T R E E )  ( S ET Q  POS ( C A A D R  T R E E ) )

CC DADR TREE ))
CT NIL))

(CA DOR TR(())
( ( C A R  P A I R )  ( L iS T  POS ~~ ( C A R  P A i R) )
(L I S T  ( C A R  P A I R) ) ) )

N IL)’) )

C D E ~ LJN S I S — S C ’ t I S T  MACRO C X )  ( L iS T  ‘EQ (L IST CA D R x )  ~~

-~~~~~~~~ — v~ 
- -—— -~~ ~

.— . — 
~~~~~~~~ ~~ 

-

IFiji . -

~

- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..~ n*— ~~~~~~~~~~ ~~~~~~~~~~~~~~~~ p

~~ “ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . , -~ — ~~~~~~~~~~ .. -. .~~. ~-

96

(CUOTE S c))) t
(0 LEUM SW flS (NAME L EA F) ! -

(PROO (r:~ ~~T)(COMb ((NULL L EA F) (RETURN NIL)))
C RP LAC D (COP L E P F) (A SSOC- ~,FL0 NAME (ISCS—OF LEAF)))
(CON D ((~~~cs— O F L EA F) (RETURN (~~SCS—O F L E A F))))
(S L i D PAREkT (CA p L E A F))

L • ~ LOOP (OR (ANt- (RPLACA PAREN T (NA SSOC—DELO LEAF ($CONST—O F PARENT)))
::DONE) N

(AND (CAD ~ PARE N T)
(RPL A CD (CAD P PARENT)

(RASS °C— DELQ LEAF (SVARS—O F PARENT)))
::DOME)

(RPLACA (COOP PA R E N T)
(k A S S O C — D E L D L E A F (S C O M P L E X — O F P A R E N T))))

(CCNO ((AND (~~ .cLL— LEAF ~A r E N T) H
(sElo PAPINT (SPARENT—O F (SETQ LEAF PARENT))))

(GO L O~~P))CT ($LTUPM LEAF)))))

9 -
CD (FUN INULt — L E A F (LF.~F)(NOT (OR (

~~CO NST Of L E A F) (SVARS—O. F LEAF) (SCOM PLEX—O F LEAF))))

C D U U N S F PAGM ~ NT (P OTHERS) . f .
(COND ((ZFS—TRIGGE R— PART P) (LIST (CONS P OTHERS.)))

((NOT (MfM ~~ (c A R P) (A N D OR ANY))) NIL)
CT (INDEX (iNTO (COP P) 1-4 .

(COND ((ED (CAR P) ‘AND)
(LAMODA (C) (SIRA GMEN T C (APPEND P

(ALLBUT C (CDR P))
OTHERS))))

((En (CAR P) tNY)
(LAMBDA (A) (~~FR AG MEN T A

(C O N S (C O N S ‘A N Y (A ILBUT A C C D R P)))
D1HERS))))

(I (LAMBDA (0) (I-FRAGMENT 0 OTHERS)))))
NIL APPEND))))

(ULTUN 51$—TRIGGER—PART Lx) (AND (NOT (ATOM X)) (EQ (CAR X) +)))

(DLFUN SPLANT (PATTERN BODY TREE . Q T H E R)
CPROG (LEA F V A R S (NA A E (C DRA SSOç N OTHER) L(PR I O R I T Y (O R (C D R A S S O C P O T H E R) F R O N T))

(R U N C O ’ .D (OR (CDRA SSOC R OTHER) I)))
~~ SC— TREE T REE) (SLID TREE (SGET TREE ‘TRE E))
(COMb ((5I SA— C SA ‘~A ” E)

(MESSAGE UTIL “~ PLA MT COMP LAIN IN G: “ NAME
I S A CS A O~3JECT ALREADY. ”)

(R~~T URN N I L)))
(SETO NA ME (S N C W C P J “SC NAME))
(M A R C (S F~~ACM(NT PATTER N NIL)

(LAMBDA (PA RT)
(~~ET Q LEAF (IPLANII (SN—TUPLE—OF (CAR PART)) TREE NIL NIL))

• . (S L I D ~A RS (CON LEAF))
(SLTO LE A F (CA R LEA F))
(COMb ((NOT (~~IS— S C — L I S 1 L E A F))

(R PLACA L E A F (SPA REPaT OF LEAF))
- (RPLA (.D LE 1F (LIST ‘Sc))))

(RPLACD (COP L E A F)
(CONS (LiST NAM E -

(COMb ((COP PART)
(COMb ((COOP PART) (EONS ‘A N D

(CON PART)))
(I (CADR PART))))

(I Pill))
(INTO VA PS CAR))

S

. ‘Ii

~

— ~~~~~~~~~~~~~
- ,‘~ ~~~~ ~~~

_ _
. t ~~~~~

.’
~~ ~~~~~~~~~

-~~

-,~~~~~~ - - -~~ -~~-. .-- - - -~~-- . - -‘- - ~~~~~ - . ~~~~~~~~~~~~~~~~~~~~~~~~~~

--re~~~~
- s . , , , ~~~~~~~~~~~~ - • - . ~~~~~~~~~~ -.~~~~~~~~~~~ nt - - - -

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ -- - ~~~~~~~~~~~~~~~~~ - ~~ 
,,- ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ - -

t .

97

U S E S — O F  L E A F ) ) )
4 CA U G P N C U  NA M E T P E E — I O C S  L E A F ) ) )  -

(EVAL (Ll~ -T ‘C ~~LT 0 P \ A ’ E  rC D ~V ) )
(I- PUT NA ;~F ~~ 1— ~.’ O D Y  b O D Y )

4 U (UT MA rl ! SC —PATTER N ~A T TOP’;)
( T l ~~T P O b u c 1  N C N ! )  (~~~r~, — L E  NAM E)

• (~~P -UT MA P- i r~- Ic - .R l IY  P i!~~ i I 1Y )
(~~N T  M A W r  ‘~~t~NCCND 1T I~~U RUN C O N t )
( R ETUR N M I M E ) ) )

(DIELL I - A C T 1 V A 1 E  (PAT TE RP ~ T~~L E  • W H E R E )
( P k O G  ( L E A V L ~ U I NOS 1 R E F  L I  ~D S P IA F R I  DO TA kE PS) r -

(51. 10 ~JNEPP (C(~’:D 
(~~ HFst E ( ( A R  ~ N E R E ) )  (I TAXERS)))

: - (5~~1D T R I P -  (~~C L 1  T R E E  T R i G ) )
(~:A P C  (S~~1i-~~L p R S  P A T T ’ k N  T R E E  N IL)  -( LAM b DA ( L E A F )

(S EIQ I r L E B I W O S  ( C ’ ~R L E A F ) )  (SF10 LEAF (CAR LEAF))
(MAP - C (‘ . O M T E x T — F t L T ( R l  ( S S C S — O F  L E A F ) )

(EA r - ’..;. (0)
( S C i ~ M A P P E L - ~ (iNTO—N (LAMB DA Cx Y) (CONS X (COP Y)))

( C A D D R  0) TREEBINDS ))
p (SETO P INE S (COND ((CADR 0) (SALLBIND5 (SINSTAN (CA DR 0)

MAPP EOB )))
CT ‘(I NIL))))

( C O M b  ( B I N D S
( M A R C  ( C O P  R I N D S )  .

(L A M B D A  (0)
( 5 5 0 M B  t~HE PE (-L IST ( C A R  0)

. (LiST OUOTE
(APPEND MAPPEDS B)))

(SGET (CAP D) ‘P R i O R i T Y )
(OVAL (I-GET (CAR DI

‘RUNCONDITION )))
) ) ) )) ) ) )

( R E TURN ( O V A L  W H E R E ) ) ) )

CDF FL JN SIMSTA N—b (PATTERN [~!NDjNGS )(PpOG ( ( B Q U O T E  ( I NT O  B I N D i N G S
• ( L A M B D A  Lx) ( CONS ( C A R  XI (L IST ‘QUOTE (COP X ) ) ) ) ) ) )  -

( R E TU RN ( S I N S T A N— D i  P A T T E R N ) ) ) )

(0 (FLU S I N S T A N — D i  C R )  -

(C O N D  ( ( $ 1 5— D r  Q U E R Y  P) ( I N S T A P 4  P B I N D I N G S) )
( ( M EMO ( C A F  P) ‘ (A N D  OR ANY))
(CONS ( C A R  P) (INTO (Cr- P P) SINSTAN—Di) ))

CT (INSIA ~ ~‘ RQUOTC))))
‘4,

(Dt FuPi I - Z A P  C~~
)

(MAF ( .  (r, L T  0 ‘1~~E E — L 0 C S )
(LAMBDA (LEA F ) (I-WEED. 0 LEAF)))

(I-RE CYC L E 0)) - -

( D ( c U ’~ I - S C — T R E E  L x)
— 

- 
• . IC O P. O ( ( E Q  ( a - T Y P E  X )  S C — T P - E () )  ‘

C (S1SA—CSA x ) (ME~~SA C , E  ~‘UT J L “SSC IREE COMPLAININ G: K
“ IS A L R E A D Y  iN USE AS A CSA OB JE CT S ”))

U ~s~~t~~o~u ‘SC—T R E E ~~~~ 
.

• - (I-PUT x TRIE (i.SPROUT PjIL))
(CSE ’F K (IVAL (Slj&~5I X S E L F

- (LAMBDA CR ) (-PUT ‘SELF SIGNAL—BUF FFR RI
CMAPC (I-ACTIVATE P SELF)
(L A M B D A  (B)

- (COND ((OVAL (COP D))
- 

- (EVAL (CAR 0))))))
- 

. 
(GET ‘S E L F  ‘SIGNAL—BUFFFP)))))))

- .
~~~~~~~~~~~~~~~~~~

- - . -- -

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

.

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

fl;-
1 .

- ~~~~~ — —. —_.____..p~~~~_..,__._ .  ~~~~~~~~~~~~ -—- ~~~~~t~~~ ~~~~~~~~~~~~~~~~~~
_ a  ~~~



~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ - -- ..— -—.-.-—~~ ——-—-.p 
- - -

.
-

-:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - -—
~~~~~~~~~~~~~~~

-
~~

—
~~

-. ‘~~~~~-~~~~~~~ -- • - 4~~•... — .. . ~~~~~~~~~~~~~~~
.. -.. . — . - -

98

. ~~~~~ d1x A - el Code

(0 (FUN I-CHA N N EL (CM) -(COt~D ((C O L x T Y P t C M) ‘C H A N : E t .))
((S I S A — C S A CM) (M E S S A G E ‘UTIL “S C HA PJ P4E L COM PLAI NING: “ CH

“ 15 AN EX I S T I N G C~~~ O B J E C T . ”))
* CT (INLWOOJ CHA NN EL Ch)

• (I-PUT C P ‘R IGHT c$4)
(I-PU T CM ‘L E F T C M)
(I - i N T RO D U C E C M) (STO G GL E C M)))

(H) -

-C O (FUN ICONNECT (PR CH MODE TYPE AT POiNT)
(pk~~~ (T P T A P)

(S CHANNEL CM)
(S IT O T A P (I - N E A O I 3J ‘C H A N N E L T A P N iL))
(S E T Q TP (IF1N~~1A P CM A T P O i NT))
U- PUT T A P ‘LUI IP) -

(I- PUT PA P R I G ~IT (I - G E T Ip ‘R I G H T))
- (I-RU T (SCOT TP ‘RIGHT) ‘L E F T TAP)

~!PUT TP ‘R I G H T TAP)
I- FIJ I T AP ‘M O D E M ODE) -

~ PUT TAP ‘T Y P E T Y P E)
I-PUT T AP ‘O U J E C T P R)

.I-INT PODUCC TAP) (I-TOGGLE lAP)
(RETURN TAP)))

(DIFLIN $FZN DTAP (CM AT POINT)
(COND (‘(EQ POINT RIGHTENO) (I-GET CM ‘LFFT))

((EQ POINT IEF1EN D) CM)
(I (WHILE. (AND (EQ SI-TYPE (SETO CM (I-GET CM ‘RIGHT)))

CHAP;’iELTAP)
(N~~Q (I-GET CM ‘CIJE C I) POINT)))

(COM B ((EQ AT FEFON E) (I-GET CM LEFT))
(I CM)))))

(DLFUN I-DISCONNECT (PR CM)
(AND (EQ (I-TYPE (SOlO PR (SF1P’iDTAP EM ‘AFTER PR))) ‘CHANN (LTAP)

(SNIDE PR)))

-
.

CD (FUN $KILL— CHANM ~~L T A P (TA~~)(I-PUT (I-(,(T TAP LEFT) ‘NIGHT (5601 TAP ‘RIGHT))
— . (I-PUT (I-GET TAP ‘RIGHT) ‘LEFT (I-GET TAP ‘LEFT))

(I-RECYCLE TAP))

(0 (FUN S K I L L— C H A N N E L (C M)
(WHILE (EQ (I - T Y P E (I-GEl CM ‘RIGHT)) CHANP -IELTA P)

($KILL—CHAPJNELTA P .(I-GIT CM ‘RIGHT)))
(I-RECYCLE CM)) -

CD (FUN I- IN JECT (REQ SRV P CM AT START MOVING)
(P ~,Oj (F(Sp ATI) (RETURN -~~~ ~

(COND ((NOT (IVISIOLE (H)))
CT (S O l D S T A R T (5010 AT (I-FINDTAP CM A.T START)))

(SPROPAc,ATE) -

(CoMb ((ED (I-TYPE Al) ‘CHANNEL) NIL) .
~ -

- (T (SETQ P(SP ((VAL (LIST (I-GET AT OOJECT)
(LiST ‘QUOTE PLO))))

(SETO A l l AT) (SETO SRV R NIL) (~~P R O P A G ~ 1E)(SETO MOVING (COMb ((Li MOV ING LEFT) RIGHT)
- CE ‘1111)))

• (WHILE (NED CS(Tr~ A TI (I-GET AT 1 MOVING)) START)
- (AND (EQ (I-GEl A T 1 TYPL) ‘RESPON SE—WATCHER)

- ~~~-.~~~~-~~~ -- ‘
~~~~~~~~~~~~~~~~ ~~~~

‘ 
~~~~~~~ ~~~~~~ 

-
~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I ‘4-i s ~A .~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ~ —~~‘—- --—.,—-- - — — - -  - 
~~~~~~~ ‘ “ ~~~~~~~~~~~~~~~~~~~~~~~~ -- -

~,-
- - - _ -.—-, — — — — .- —

~~~~~~~~~~~~~~~~~~~ 141

~-~~~ u_-_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - •~~-—~~.- -—  — _ _

f 
- 

__
- __•_4_4~

_ _  
- -~‘-~~~~.•~ -‘ -. - - - - - - -- - -~~ ---“—4—’-.- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~‘ 4-lL~~~ ~~~~~~~~~~~ ~~~~~ - 1.,

- - ~~~~~~~~~~~~~~ i
- 

-

~~~

- 99 - - i

I (I-VISIBLE All) -:

(Do (5010 ::Tl (OVAL (LIST ($601 AT I ‘O B J E C T)
I - (LIST ‘QUOT(ROSe))))

(OR (EQ (I-GE T A ll ‘MODE) ‘TRAN SPAR ENT)
- (S(TQ RESP ::Tl)))))

RESP))))))) I
— - - (DEFU?4 SPPOPAGA1[(1

1

(WtiILE (AND C O G (I-TYPE (SrTQ AT (I-GET AT MOViNG)))
I ‘C H A N t ; E L T A P)
I (NOT (AND (10 (1-COT AT OPJECT) SRVR) -

.4 (S V I S I F L E A T)))) - -
(AND (CC U-GET AT TYPE) ‘W A T C HE R)

— (I-V ISibLE AT)
(DO (;LTQ ::ll (IVAL (LIST- (I-GET AT ‘O B J E C T)

(L I S T ‘QUOTE RtQ)))) -

- (OR (ED U-GET AT ‘MOD E) ‘TRANSPARENT)
(SLID REQ ::T1))))))

-
- (DL FIJ N !SHOWCHAM FLXPR (CM)

(E V A L (L I S T ‘S P R i NT C M))
(WhI LE (E0 (I-TYPE (~~ETQ CM (I-GET CM ‘RIGHT))) ‘C HANNELTAP)

- (OVAL (LIST .I-PRIt~T CM))) - ~.
P .

- 1) -

I -

- 1’

~~~~~~~~~~~~~~~ ~~~~~~ — ‘-~~~~~~‘-‘ -~ r •—“--•.- - -——~~ ‘ - - - 
-I -

~~~~~~~~~~~~~~~~~~~~ -_.- -

~~~~

-

~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
- -

~~

U --

-~~~~~~~~ ..~~~~— - -~~~~~~~~~ -- - .~~ I

—
~~~~~~~~~~~~~~~~~~~~~~ 

---,-- -.---- -- - -. w~-~ 
—•“ ---- 

~~~~~~~~~~~~~~~~ 

—. ,

- - - - ‘ - - --- - h -.~~ .-. ~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ - ________

4,

-1
100 -

. ~ppendix C — Database Code

(D FUN S SY M t O L P A T M S (S I
(U- I TO ::PATHS NIL) (I-SYM—PATHS S 0) ~:PATHS)

(D E I G N I - S Y U — P A T H S U PATH)
(CON E) ((1 C S A — A T O M 5)

- (C O N D ((L u (I - T Y P O S) ‘D A T u M)
- (i S Y , - r — P A T , 4 S (I - c - I T S ~NTUPLE) PATH))(1 (~~USM (C O NS 5 PATH) ::PATH$))))

• ((5010 PATH (TPES PATH lr))
QAPC— I1 (LAFBD A (K Y) ($SY”— PATHS K (PLUS PATH Y)))

-) S ‘(1 2 3 4 5 6 ~ 8 9)))))

- (0 t~ UN I-C A PJ D IDAT L S (5) -

(C S E T Q : : I - E S T ‘(N IL T C C O C O C)) -
-ISM I N — S Y ~ S -0) •- : (A ND : : D L ST (C D D R : : r 3 E S T)))

(Dt F U N S M I N — S Y M (S P A T H)
(COIJ D ((I - C S A~~A T 0 M 5) -

(C O N D ((I - i s — U - A - - V A R S))
((ITu (~~TYP(SI PA TUM) - j• (SMIt . — S Y M (I-GET S ‘NTUPLE) PATH))
((CSE1Q .t:T1 (AS SOC PATH (I-GE T S ‘DB—BUCK (IS)))
(CCMD (•Cor’SSP (CA DR ::T1) (CAOR ::EEST)) - -

(CSET Q ::~‘fST ::Tl))))))
(1 (SETQ PATH (TIMES PATH 10))

(PPQG ((Pc - S 1))
- LOOP (SMIN—SYM (CAR 5) (PLUS PATH P05))

(COMB ((AND ::F4~~ST (5010 S (COP 5)))
(SOlD r~o~ (ADD1 P05)) (60 LOOP))

• -
(1 (RETURN)))))))

I -
(B (FUN I- C PFA TE—DA TW- 1 CD) -

(PROG ((OAT (5 .NF ,~Cj 3 J DATUM N I L))) -

(SPLIT ~A T N T U PLE 0) -

(S I N lt < O u UCE D A T) -

(MAP C U S Y M U O L — P A T H S B) —

(LA’-’UDA (x) (CO ~1D ((CSETQ ::Ti (ASSOC (COP K)
-

(SCO T (CAR X) ‘t’E-BUCKETS)))
- (R PLA CO (COP ::T1) (CO ~:s DA T (COOP ::T1)))

(RPLA CA (COR ::T1) (ADDI (CADR ::T1))))
(T (AUGPROP (CAR X~ 013—BUCK FTS - -

- (LIST (COP XI 1 .DAT))))))
(RETURN DAT)))

- -

(D(F LIN I-PA~~T (PN— FILT LR (TPL (AMOS) • 1
(COLLECT CANDS a

(I AM(JDA (C) (CONE) ((SP’AT (H (I-GET C N1UPLE~
’ TP L~(CONS C ::~~1NDS))

- - - CT NIL))))) - -
-

(DIFUN I - M A T C H (0 TPL)
(SOlO T-’AT CH—(UI(RIPll—C YCl((ADD1 MATCH—CURRENT--CYCLE))• ICSETO ::“INDS NIL)
(1Mb (1~~A l(H1 B IPL) (CONS T ::P1NDS)))-

(B (FUN PA ICH 1 CD ilL)
(CON y ((ATOM TPI)

(C C N D ((1 I~,— C S * — V A R TP L) .
(COMB ((EQUAL U-MATCH—CYCL E—MUM TPL) MAT CH—tU RR~ NT— CYCL()

A

- -“~~•__•14•~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘__--,. •--•. _,__-,. - ~~,. .---— ,—. - . --—-——.~ —- - ________ —— _ - --—- -

-I

LI .~~~ ~~~~~~~~~~~~~
— - --

~~~ ~~--~~~~~~~~~ 
-

~~~~~~~~~~~~~~ ~~~~~
. .

~~~~~~~~~~~~~~ 
~~~~~~~


-
-- - -

-— —- —- —~~~ --~ — — .,_. - - ~~~~~~~~~~ - - -~.-_ __ .~._
~~~~~~~ — --  ~~~~~~~~~~~~~~~

1Q1 -

(( DUA L ( - M ? 1 r ’ - ~—~~P- G ; ’ • G — OF TPL ) B) )
C T  ( S P u T — ” . \ 1 c I I — c Y c ~~ 1PL • M A T C H — C U P R E N T — C Y C L E )

(S P U 1 A T C ” T 1 ’ E ’ ~~’ c TPL 0)
(PU$’~ tCC’ .~ Tel !)) ::E)II.LS))))

((Fe (I-TYPE ~Y F ’ L ‘-~~~u~ 
)

(0- (U TPL ~) 
( : ‘ A T C H l G (I-OtT TPL ‘NTUPLE ))))

(1 (1.0 IlL DI)))
((ATOM B)

- (CCNb (COG (‘TYPE B) CAT UM ) (S~~~1ci4 1 (I-GET D NTUPLE ) TPL))
CT NIL)))

CT (MA PC—N—u ;.flL SM A I C t  1 N U L L - D TPL))))

(0  LIUN SN A T C H— C Y C L E — N U T M  (VI (O~I (‘Cr -P V ) (~~PL A C B  V C))))

(0  II UN S ?-)~ IC H— JIN D )T - ~ — 3 F CV ) (E~ ~L v) )

(DIFUN SPUT— MA T (H— CY CL~ (V C ) (‘-PLACD V C))

(D~~~UN 1PU 1— N A l C ~~—bi~,rIt ,G (V I’) (SIT V G))

(D(11 ( I - F E T C H  (ITEM)
(COMB (t~~A CT I ~E C ~- C L E A R  ‘Mf ~(~~Y) (Wr~~1N~. ‘~~1M OR Y i T EM )  I)
(CSLTO ::F[TCH (j P ; - t T E R N — l I 1 1 1~ ITEV (~~(~~‘~T L K T — F I L T E R

U C f ’ -~~!t ~A T t S  1T L ~ - ) ) ) )
( COM B (k~~A C T I V E  ( . C L ( A R  ‘ro t  ~- (  ¶P) ~~~~~~~ 1t1C ‘M I M R E S P  :1 E T C H ) ) )
: : F E T C H )

( C E F U N  S S T ~~R E ( I T E M )  -

(PROC Co CTK )
( SElL) B ( I - P AT 1 ( R N - ’  - R 1 1 C M  ( I - C A ?~D I C I ’ T E S  l l CMf l)
( C O N D  ( (S L I D  C T ~ C ,.. . E X I — F I L T E R 1  B) )  ( R E T U R N  ( C A A R  C I X) ) ) )
(SET’) B (COND (B (CAA R 0))

( 1 (~~CR (AlE ~~~A IG
M ITEM))))

(I-TOG GLE 0)
( K ET URN B) ) )  

-

CD (FUN I - E R A S E  ( I T E M )  
- 4(MA PC ( I - F E T C H  lT L~~)

(LAMBDA (B) (AND (I-TOGGLE (CAR B)) (SUNCREATE— DATUM (CAR B)))))
::FETCH )

(DEFeR SUNCRE A TE—DA TUM CD)
(MAPC (I-SYMPOL— PA THS (I-GET B NTUDLE ))

(LAMBDA (K) - 
-

(CSETQ ::Tl (ASSOC (CDR )
((Silo ::12 (I-GET (CAR X) ‘DB— BUCXETS ))))

(0010 0 ( C O P  ::T1)) -
(C O M B  ((C O O P  ~:T1 ) (RPLACA (COP :~~T1) (SU!31 (CAOW ::T1))))

(1 (I-PUT (CAR XI ‘Bp—VU CI (ET$ (EELQ ::T1 ::T2))))))
•($RECYCLE 0))

(((N D ((UU(3OUNDP ::D8—ASSIST) (CSETQ ::08—AS SLST I)))

(C CR0 ((UNEOL.j NDP M A T C H — C U P R F P 4 T — C V C L E )  -
(CSEIQ MA TCH CURF ZEN T CYCLL. 0)))

(CSETQ ::DATAflAS L— IT T E R F A C O— F UN C T I O N S  ‘(+ -)) 
-

( DEF U N S A L L U I N DS  (P) - -

(COMB ((iIS—DB0UL ~~Y P) 
- 

- 
-

CCOND . ((CSEIQ ::T1 (EV ~~L P))• (CO N S ~~~ (CONG ((CDAR ::Tl) (fNTO ::T1 CDR))
(1 ‘(NIL)))))

CT N i L) ) )
((ED (CAR P) ‘AND ) -

—

~

.T 11.1. I..IT ~I..II - IITIIIIII. 111..TIT I. . ~. ~t~1



- -- - - ------ ~~~~~~~~~~~ - -

-

- -

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ‘4-, ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ - —- ~~~~~~~~~~~~

102

-
(Ft~OG ((B I N D S ‘(NIL)) NEXT)

L O O P (COM B C U ; IJ LL (S E T O ~ (CBR P)))
(R E1U~~N (C~’NS ~1 BINDS))))(SETQ BIN DS (INDEY (INTO RINDS

(LA M P C I , (B)
(COMB ((SIlO NEXT

(SALL UIND S (SIMSTAN— D (CAR P1 B)))
(INT O (CDR NEXT)

(LAMBDA (N) (APPEND N B))))- (I NIL))))
- NIL A P P E N D))

- - (CORD (c-INDS (GO Ic-OF))
CT (RETUR N NIL)))))

((OP (00 (CAR P1 ‘OR) (EQ (CAR P1 ‘ANY))
—

(CSETG ::T1
(U N I G U L — W R T (- i N D E X (I NT O (C G R p)

-
•

(lAMr~L A (K) (AND ((5010 ::T1 (I-AL LBINDS K))
- (CDR ::1l))))

NIL APPEN D)
EOUIV))

(CORD (::T1 (CONS ‘1 ::T1))
((EQ (C A R P) ‘A N Y) (T NIL)) -

J (1 ~1L)))((OVAL P) CT NIL)) ‘-
-

• (T Ml I.)) I -

CC SE T Q ::bATAP A 5E— jN T ER FACE— FUNCTIO L~
’5 ‘(4 —))

(DIFUN + FEx PR (ENERGY ITEM) -

(OR (I-FETCH 11C M) -
(AND ::r~~—AS sIST (PRINT “DB—ASSIST. ..”) (PRINT ITEM)

(*PIAD “RESPONSE: “1)))

-
(D IFUN — F E X P R (E N E R G Y I T E M) -• (OR (I-FETCH 11CM)

(AND ::1-~~—A S S1 ST (PRINT “DB—ASSIST ...”) (PRINT ITEM)
(~~~EAD “RESPONSE: “ 1))) -

(DE FL IN I- IS—DR GUE RY (XI -(AND (NOT (ATOM XI) -
-~~~- (MEMO (CAR X l ::DATABASE —TMT(RF A CE—F LJNCTIONS)))

• -

~
- i~-’ .- -2 - •

* ~~~~~ ~ -~~~- ~~~~~ ‘-~‘ ~~~•—~~,-

~~~~~~~

— - —



—
~~~.* -‘ ~~~~~~~~~ ----~~~~~~~ - — -- — - -

~~~~ ---

- —- - --- _____._&_____ - -- -4, ~~~~~~~~~~~~~~~~~~~~~~ 
_
~ ___~~•:.-4~~~~

__
~_ _ 

~----- --- - - ~~~~~ 
_
~~~ i~2~~

- -.~~~
_ __ -_ ~~~~~~~~~~ ~~~~~~~~~~~~ ., - - - ~~~~~~~~~~~~~~~ -

103 -

Appcndix II - Code

(D F U ~ IVIS1BLE (ITEM) (CAR (ic- Er 1~~[- ’~~~C~~NT~~X T J))

(B t~’~ ~CO NTLX T 1ILlER (C A l O 5)

(FIL lE R CARDS (L ,NIJDA (C) (C l~R UG IT C ‘CONTEXT)))))

(DEFUN 400NT EXT—FI L TE PT (CAND S) -
(FiLTER CARDS (LAMEDA (C) (CAR (I-GOT (CAR C) ‘CONTEXT)))))

(DEFU ’ ; ~ P O P— C O N 1 E X I ()
-

(PR O L (C T X)
(C~AD ((NULL CONlEX T— ~~TACX) (RElUR ~ NIL)))
(MAP C (C A P C O N T E X T — S i A C ’)

(LAME DA (B) (SETO (TX (~~G E T 0 ‘C O N T E X T))
(CC’~D (C C DBR C 1 :)

(R PLACA CIX (NOT (CAR (TX)))
(RP LA C D CIX (C D D R CIX)))

- (y (I- KiLL B)))))
(S ITO CONTI X 1— S IA CK (CBP CONTEXT—ST A CK))
(Silo CONT IX 1—LEVEL (Su~~1 C O N T E X T — L E V E L))
(COMB (W—ACT 1V ~ (WC1EA ~ CLEV EL) (WPRINC ‘CLEV EL CONTEXT—LEVEL)))
(RETURN CONTEXT— LEVEL)))

- (DEIGN I-KILL (iTEM)
-

-

(EVAL (LIST (CDRA SSOC (I-TYPE ITEM)
‘(UAT UM. I - U N C R E A T E — D A T U M)

(S C . $ Z A P)
(C HA h N EL.~~K I L I— C HA N N E L)
(C L- (A N N E L T A P • I - K I L L— C H A T I U E L T A P)))

- (L I S T ‘QUOTE ITEM))))

CD (FUN I-PUSM—C ONT EXT ()
(SIlO CO N TEXT—SlACK (CONS NIL CONTEXT—STACK))
(S EIO C O N T E ’ T — L E V E L (A D D] . C O N T E X T — L E V E L))(CGN D (W — A C T I V U (WO LEAR CL IVEL) CW PRINC ‘CLEVEL CONTEXT—LEVEL)))
CONT EXT—LEVEL) - - -

CD h U N I-RESET—CO N TEXT (LEVEL)
(WHILE (CIREATER P C O N T E X T — L E V E L LEVEL) (I-PO P—CONTEXT))
1) - ~ -•

-

(B (FUN I-INTRODUCE (ITEM) (I-PUT ITEM ‘CONTEXT (LIST NIL)))

(DEFUN I-TOGGLE (ITEM)
-

(PR OG (((T X (I-GET ITEM ‘CONTEXT-)))
• (R P LA C A CIX (NOT (C A R C I X))) -

-

(R ETURN
(CORD ((AND (COP (TX) (EQUAL (CA DR Clx) CONTEXT—LEVEL))

(R P LA C A C O N T E X T — S T A C K (D E L O I1~~M (CAR CONTEXT—STAC K)))
(RPLACD Clx (CDDR CTX))
(NOT (CoP (TX))) -

(T (RPLACA CONT E XT—STACK (CONS ITEM (CAP CON TEXT—S TACK)))
• - (RPIACD CTX (CONS CONTEXT—LEVEL (COP Clx))) -

-

-
N i l)))))

~~~ 

—

~
CD (FUR I-H i DE (OBJ) ( p

• (AMD (I-VIS iBLE 013J) (I-TOGGLE OBJ) ($t’ZJLI .ODJ))) t- -

(DEFLJ R SUNHIDE CORP (OR (IV IS1RLE OBJ ) (I-TOGGLE CLIJ)))

:
— 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~ —‘--a~ t_.. A âS ,Ld ~~~~~~~~~~~~~ .j_ . fl.i, i- — ,~:a-~~- 
- -

- -~~ — ‘~~~ r~~
- -

~~~~~~
— ‘--------- ‘-~~

- --
~~~~~

- - —
~
- ---

~

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
—,-

~~~
-- -.- -

~~
-.-

~ ~~~~~
---- ---

~~~~~~~~~~~~ ,. ~~~~~~~~~~~~~~~~~~~~

- ~~~~~~~~~~~~~~~~ —~‘r-’~-~’-—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - _ _ ~
__

~~~~~~_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

•
~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — - - - - - - - - - - . :~~. ~~~~~~~~~~~~~~~~~~~~ ~~~
-

- - -

104

- Appendix E — Miscellaneous CSA SC—Related Code

(((N C ((U N~~O Ut4 DP : : A G E ~.D A) (C S L 1 O :: Z G t ’ t A N I L)))

(B lF~~~~ $SE~.O (BEST I TEN PQ 1OR • ,N5O ~~~)(- t T ~ i T ~ (CC - NS I T E ~ (CONG (~~uNC (’-ND (C’.~ RUNCOND)) CT))))
(51 1 O L S 1
(C~;r~D ((EN PRIOP FRONI) (C (-NS ITEM C E~~AL BEST)))

- (([1 PRIC ~ FUAR) (A[’~~~;G (E V A L 01ST) (CONS ITEM tilL)))- CT (CONS 111’ (OVAL 0! S’))))))

(0 (F UN ~MAK E — C S A — V A R (A) - -
(051 10 : :T 1 ((0(0 ((A T O M A) (E , r L O D E A)) C T A)))
(((ND ((N E (- (C A R ::l1) : : C 5 P — V A O — I Y r)

(C C.~ -F’~~ESS (C”NS ::CSA—VAP — SYM ::T1) 1)
((~~To°’ A) A)
(I (COM PRESS A)))) -

-

(C : t T Q : : C S A — V A K -S YM ‘—1

(0 ~ru N S I S— C S A — V A R (A) (10 (CAR (O X C I O D O A) > : :CSA—VA R—S YM))

C (FIl l . !-INIT C) ,
(?‘~~t~C (CSt.—OB J—- T YPI S C — MA t - E D C SA_ NA L~E L E S S) -

(LAM E DA (x) ((SET K ~~L ’) i)
(CO ~.o ((Ui1~ O UN DP RE C Y C L E B — N 0 0 0 S)

(CS FT~ R E C Y C L E D — N O D E S NI L)))
CUETO co t n Exl — L EV rL C)

IC~~EIO C-) T E X T — S l A C K (t-IL))
(CI! I’) CUk F U T — A C T IV) TY PL PC E IVING —R FAL.IT Y).

? L [F I ; - E THE (SA ME?~ORY NODE TYPES
-

- (~ - A F C ‘(
(SC CI C— PATTERN SC—PODY ‘PEE—LO t S

C O N T E X T P R I O R I T Y R U N C O N D I T I O N) C I R E E — L O C S))
(. C — T l € ((T R E E S I G N A L— !~U F F U R) (TREE)) -
(CHA ’’F L (LEFT RIGHT C O N T I X I)) -

(L I - I A N’~L L 1A P (O B J E C T ‘OO E T Y P E L E F T P1014 1 CONTEXT)) - -

C A~~S—~- E C H (4ANE I~A R l S EV E N T S PURPOSE jR I c - c - E R IN1T I A L — W O R L D))
(;- : t S — - E C N — [v E’ ;T (P A R I — ~~F C L A S S NIUPLE L I N K S))
(;~~ s— ~~~ j (N A M E PHY S—DCS C P*R l—’~l C O N C C P T— F R A M E))

-
• (

~V ’ . T A Y — N ODE (K E P N L N G Pi l l P E N T))
— (h~~~—~~ (H— I INK (TYPE INSTA N C E— C F EVENTS GA TES))

ISA—P ffl M (CLASS At ~G C O U N T t 1 5 O C C U R S — I N — D A T A O C C U R S — 1 N — A L O S
O C C U R S — i N — i U C E~- t E N T S O C C U R S — Z N — P R E D I C T I O N S
~ C C U k $ — I N — S F M A N T I C S)) -

(i iX — ~~OR B (N E T S C S A — M A ’) K E R S ‘ E (N I N C)) -
((.~~A — L I t k (E V E N T — T y P E S G A T r — T Y P E S)) -

(
~~~~1 —l l s r  (TEST VA~~S O C C U R~~— IN))C T — N O D E  ( p y p 55~~ T L S T  T E S I T Y P E  R I M E - I N c - S  C H O I C E S  O C C U R S — I N  A c T I O N ) )

( - - A1G (ACCOMPLi SHE S I V E ( T S  V A R 1 A D L L S  OCCURS— :’: TH,INGS AGE NT ))
(AH :, — A L G — L V L N T  (PA”l— UF C L A S S  N’TUPLE LIN KS R ECON ~~EN~~A 1ION ))-j (~~~

r
~~A LG _ L jl~K (lyrE 1Ns TA;~ce— oF EVE N TS G A lES ))

- 
( - 4 ~ t-~ ~~~~ P10-P ( P A T T [ I - .N V A f ~iA1 - L(  O C C U R S — i N ) )

~ C ) )  ? ~PA C t R ES E R V E D F O R  “T O K E N ’ E N T I T Y
(,A 1l;;~ (‘1ev-Il C PNII Xl))
(S Y’- — AiG (AC CC”Ft . I StiES (VENTS INSl~~N cL— O F AGENT))
( NY ’  —A( 0 — I V I N T  (PAR T—O r C L A S S  NT IJPLE LINKS ))
(NY’~~~L & U HY (1YP I N S T A N C E— O F  EVE N T S GATES))
C ~. L G — t  I N~~1. (AL ~ ;iI ND iNc -S O CCU R S— iN PL COMM EN DA T ION))
( I ’ . D t ’c r  ~ F . T  ( r ~lrPL L~. O C C U R S — f l , ) )( L

~~E O ) ( i ~~~N (~~T~~P L ( S  O C C U R S — T N ) )  - -‘t A N .jN ~~ ( NT U P L L S  O C C U R S — i t : ) )
~~~~~~ - - ( f T~~i - ~ . (T~~P~ T OPNO DE V A N S  OCCURS—i’:))

(C T K - ’,OD r (O C C U R S - I N C H O I C E S L I N K E R S))
- -

_ _ _ _ _

- -,~~~,• — - - --- - - _
_________- -, -

~~~~

- - — - _____________ -

- —---- -  __•___ __4_______- ,_______ 
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- ~~~~~~~~~~~~~~~~ ~~

N~~~~rL ~~~~~~~~~~~~~
______ _________________

-
—_____

- -
~~~

-

- ~~ .,---_- - - - - - ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~ - - - .-J- —~~~~~~.--~

- 

105

((TIi 1 I N ~~i .~( (O((’,~.’- — ’ FUP~( ~1$(KL FNGTlI))) (L A~~’L~A (~~) (i’J~ ( C A t  K)  SL l ’ T I U C T U N E  ( C ~~DR x))
(CC’ ’- ( (f U~P ~) (ruT (CAR X) 1G’~O RES LO TS ((ADOR x))))
(C S L T  V 1 -— O P J — T Y P E S ( C O N S  ( C A R  X )  C S A — O b J — T Y P E S ) )

— (CSI I C t-~. K) N1L))~? U F INE T t-s~ C S A  AL I , (~~L 1 I I - I J C  L INK SEI’ ’ -N T IC S(
~~~ F C  (

((— C u~~ ((t~ 1) (N 5C~~) (I)) ?CON TINUOU S CAU ~~EC~~— C (~~S E ((I- i) (5 S f)) (5)) ? R E P ET IT Iv L C A U S E
(C — C t K Y ((A 7) (~~ - S C)) CS))

- (uS D1~~Y ((A I) (S SC)) CS))
(O~ — C h I ~~ E ((A T) CS)) (5)) ?O ’4E—SHO T CAUSE
(C — I ’ A L ~ C(S) (A 1)) ‘:11)
(OS—F - - t t 1 ~~ N) (.~ I)) ‘IL)
(5 — C f - -~ L I ((S S C) (S C - C)) (5)) -

-(I l i l E N . ((SC) CS)) N I L)
(~~ — (;1;~ ((S S C) (1 -)) (5)) - ? A I G O R I T H M I C M O T I V A T I O N
(1— ~ 1 ; - ((S SC) (A)) (s)) ?COM PCNSA TOR Y M O T I V A T I O N
(C—I ~t’~ c~ ((A I) (S 50) (5)) -
(-

~-~:v ~~
- - c - :- ((~ I) (S S c)) (5)) -

(S 5 — t Y~ T f ~ ((A T) (f-)) CS))
A~ l A 7 ((N) (S)) N IL)(

~ : — A N I ; ~G ((N) (5) (A)) N IL)
1~~ D(1 C~~ ((A S SC I) (S S C)) (5))

) C LAMP ~~ (A) (I~NL WO!~J C S A — ~~1’ - t ~ (CA P X))
(~~Ful (l~~R X) 1V 1 5 1— T Y P E S (CAD R K))

• f (SF111 (CAp K) G - T 1—TYPES (C (-DDR X))
• (~~R~~Co:-~ (CAR K))))

“ 1 - . IT 1AL I~~1D”)

(B (1 G’~ I- C S A — A T O K (A) (A T O M A))

-

(C ~EIS I- PUT P U T)

(C sv:rc ~GET GEl)

(0 l~~uN ~- T Y P [(O B J) -

(C O t O ((
~~‘iD O C S A — A T C -- ” O O J) (G E T OP J C S A)) (C A !~ (G E T OIIJ C S A)))

(1 Ui,K!,O~~N)))I
(B trt I-’~EwOR J (TYPO •(i~- c G (o’-J)

(C ON~ (N A M E (SETO N A ~ ’E (C A ° K -A ! ’ E)))) -
(S E T G D L J (C O M B ((NULL N A M E)

(CCNO (PE C Y C L E D — N C D E S -

- (PROG Cx) (5510 X (CAR RECYCLED—NODES))
(CSITO .-!C ’YCLE B— NODI S

(C O P P E C Y C L E N — N O D E S))
(CSETQ C S A — N A M E L E S S (CONS K

C S A — I ~A M E L E S S))
-t -1 (REiUR’~ K)))

- CT (CSETQ CSA ~~N A W E L E S S(C O N S (IMlE~- : C c - F N S Y M))
- - C SA— NA ’-~EL 1 SS)) - —

(CA l’ C S A — N A M E L E N S))))
(1 (ESria CS~~— N A N ED (IONS N A M E CSA— NAMED)) -

- -- - - - t A ! ~~))(C O R D ((: 0 T (: E M ([p T y r € c s A — O U J — T Y P E S)) -

• (r 1 SNAC JI U1; l ‘ I N L W O r J COi!~~L A i N 1 N G : UNKNOWN O D J E C T T Y P E “ TYPE)))(
~~Ul C- U ~C S ’ ~ (L I S T 1 Y P L)) -

(h E T U R 4 O~~J)))
- 0

(B 1~~1~ : SP E C V C U C~~OD1) -

(N t:O LI I- O f ~! >
(C~~- D ((MV ~ NODE C S1 ’— NA’~UI(SS)

-

(C 5 E 1 o R E C Y C E I U — K 0 0 0 S (C O N S NODE R E C Y C L E r — N O D E S)) -:

- ~~~~~~~~~~~~~~~~~~~~~~~
- -

~~~~~ :-~

- 

- 

- _ _

~ li&l ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ a—--- ~~~~~~~~~~ 
—- --- - ----—--—--- -- ----- -- - -—------- ----- —- —



— - -j r ~ - ---- — —v—--- - ~~~~~~~~~~ 
~~~~~~~~~~ ~~~~~~~~

- --
~~~~~ ~~~~~~~~~~~ 

--  - - 
~~~~~~~~ 

-

- - - -~ <- - -j%- - - - “ r r — -- --~.n~~,---, r~ .tc~~~~ -._-~- - - ~~v n - ~ ,- - *~~~~~~~~ 4- - - ~~~~~~~~~~~~~~~~~~ -

- 106

((S t i c f S A — N A ’ t L E ~~ S (D ilu h O D E C S A - N A ~~1L E S S)))
(1 ((5 : - I . C e — I ~ -- ’~L0 ~~ LL G ‘,U U : C S A _ N A M F L))))

C D t : - I~ -S T ’ ’: (S T R U C S [- V - I)
t I - c s C) -

-

V - C l (C C ’ - - V : J L L ~~~~‘ - i~~l (p~~i : - r -~ S T R l j C)))
(S~ - S~~~ UC (5 i~~~~~ (C B A ’ - ~ t i~’ L S T) (CA A R SUPIST) STRUC))

— - (S~~T . SLI t ST ~~~~~ L - I i - LST)) -

- -
(N O t c ~~~

))

(L J V - -C r r C s - ~ - : (l - - : 1~J)
((C-~~

((‘;(- T [5 f 5 4 P :-: f ~~
— r) L4 J (E V ~~t (I - T Y P E ~E7I~~O U J))))

- (~ I T (~~ - ! f - T ~- L ~- - -C- ~ J) (C C s ~ I~ l M_ O L J (E V A L (I - T Y P E MEM—oeJ))))))

(r ; t~~~- C r M A C ; :0 O E J S (C O N S ~~ PF INT e~~- J S))

~ i l L - N J 5 A — (~~;- C X) (A N C (f - n (A T O - ’ x) (
~~C S A — A T O N K))

- VE T K C S A)))

(C~~1I~ ~ L S S A 1 - i (L A - G B A T E X T
(E P O S () (i ? . T O (C~’ C IT X l) (L A~~B D A C Y) (PRIK1 y)))

(I E RPR I))))

U- ~r: P — T N T FL (5[J N
C A C (‘NJ S (I t- -~ :N ;~ ((N J)
(L ~ - - N (-: ;~- J r ~~I - t t (f - L S i 5 L C T K ~~M ES J O N C R E)
(S t V C u J T ~~ I~ V T Y P [NJ))

- (C- ’ T -~ t-~~C P L ~1 (~~C t ~ Cl J))
• ‘ s : 1~: ~- L c - i ’ ; - -~- c s (G [T (U J T Y I E S L f ’ T S 1 P L I C T U R E))

(5~ ~
) J o N ~~~ (N i l C .~ J T ” F - l ~~~~~~~~~~~ 01 5))

• V 5 5 A C 1 [- T I L ” ’)
-: C ¶ S A C L U T I L “* I . C L J L C T “ O’~J “ C” O 1- JTYP IT ‘) * * “)

L C r
(C N b ((t ~~~~L S L O 1 N A ’ T L S) N I L)

-‘ (T
(M F S S P - (I. UT I L “ “ (C A P S LU~~N P - ~E S) “ : “ - -

(C \0 ((~it ’~ ’ LR (C A R CL ~~1- ,;- - E S) I r L C P E) * * I G W C R O D * *)
C l (V ET Oj~j (C b ~~ 5 L (T N A M E S)))))

(S [T Q ‘-L O T t - f - ’- - F S (c o r ~ S I O T M A M E S))
(:~~‘ :-u))

((C O G () LUC ~’ ((C S ! ; ((‘ s U L P~’ C r L S T) (r E T U ~~M N i l))
((A N D (N E ~ R A A R P R C P C S T) C S A)

t : (N O T (~~i tijt ER ((A A R l-- R O P L S T)
(G E T O t - J T Y P (. S L O T S I R U C T U R E))))

• 1 (MESSAGE UT IL “ ‘ (C A A R P~- O P L S 1) “ :
(C L - I P R O P L S T))))

CS! T - PRO PE SI (‘~r-R PFiCt’L~- 1)) (c-B LOOP))
C -~~ !~t C ’ ~ I. 1) (W 1 N C U1 IL 1)
(‘ L T U~-N ’ I L))))) C

C c ~ - t~ - w~~nc ((d f l - Ld~ x n it))
-

- - - - - - - “ ~~~~~~ ‘~~~~~~ “ -~~ — — - - -.p-,.-~~~~~~~~~~~~~ - - - - ’ - - - ~~.- -- ,- - -_-~~~
_ - - ——- S- —

•
•

I

— ~~~~~~~~~~~~~~~~ - ~~~~~~~~~~ ~~~ --
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --

- ‘
~~~~~~~~~~~~~

‘
~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

- - - ~~~~~~~~~ — --~~ - — -~~ —- —-—— - - — -

- 107

4pp~-ndix F — LISP Ex n- ~1 ’ns and Incoripat ibi1itieI~

(C ~F T Q : : D E F L J N N E D NiL)

(B UN I DE F IJ N (C . A~~; CA A r (.
(P R O N C I V I C) ((O s : - ((S L I D T Y P E (A S S O C (CAur A P E)

((::AChO • If H-AC) ((E I F ’ R • bE FSPEC)(EX PR • CSETQ))
•

-)) V-rI -- C D A R C (CDDR ARc-)))
C T (S E T O T Y P I (E X P ~ • (S o l o)))) - -~

(V ’: G ((NOT (F T -I LER ((A r A N G) : : D L F U N N E D))
(CS [1 G ::NII oNNED (Cu ’S

(CAN I - R G)
::DLF III.NED)))) -

(C U t I D ((N O T (S R (U (~~C f - R SOU ,~C E — 1 LT) (* C A R ~~!,!,! .! ,))
(L U SN; C F— E L i u’~~. ’~O~~s)))

(PUi (t A n A R C -) - SN:’ C E — E L I S O U R C E — E L T))
(S I T O T Y P E (C U R ~Y P [))

(RiTUR I. (LIST l Y r E (C A R A R G) C C O K N LA M B DA (C D R A R G)))))))
a

(B [U-N CORA SSOC (K Y) (C O N G (((5010 : :T ’ (A S S O C K Y)) (C D R ::11))) (I NIL)))

(ii i F s ’ I NT O — N C ’ , -I • ! ,L J5 T5)
(P I 5 5 C~~E S U L T)

L U-NP (C O R D ((F I N D — l I p s i !, L I ST S A T O M) (R E T U R N (R E V E R S E R E S U L T))))
(SETQ R ESULT (~~O ’ S (E V A L (C O N S ! ,F~

- (11.10 ! L I S T S (L A M E D A C x) (L I S T ‘QUOTE (CAR X))))))
R E S U L T)

(5010 !,L I S T S (I t - T O !,LISTS CO P))
(GO LOOP)))

(0 EFUIS r- 1APC —N (! ,U • I ,L I IT S)
(‘-‘~~C C ()

ICUt’ (C O R D ((r 1’~ o — r 1 r S l !, L I S T S A T O ? ’ -) (R E T U R N ! , L T S T S)))
(O V A L (Co - ~~S ~,IN

(I N T O !,I I S T S (LI- ’PDA (K) (LIST QUOTE (CAP K))))))
(SETO ‘,LI ST S (INIO !,LISTS (OR))
(60 L U O F)))

S (Dt iu’ - RA P C— U — u s T I L (!, FN !,CPl1 • !,L1STS)

1(1ST (C O R D ((F l u B — F I R S T ‘ ,L J $ T S A T O ’ -) (R E T U R N ! , L X S T S)))
(CO RD ((! ,C R) T (E V A [. (C O N S !, F N

(INTO ‘,LJS TS (LA M CDA (K) (LIST ‘QUOTE (CAR X)))))))
— I (R E T U R N N I L))) -

(SET O !,LISIS Cis ici !,LISTS C OR))
(GO LOOP)))

-

(0 (1 w : NEMO CX Y) - -

• - - (C UN D ((I.uLI. Y) !,I L)
((EQ K (CAN Y)) y>
(1 (MCMI- K CC DR Y)))))

-

-

(DUCt ; PUSH FE X I R (I ITEN !, V A R)
-

(S ET !,V A R C C C N S dV A L ! , I T t M) ((VAL !,VAR))))

C D I~~i’ C 1 L L F.C 1 C L 5 ’ f~ J)
(P E O C (Q I S U L T ~~t - ~~~)LI’V (C O R D ((NIh 1 S T) (N E T I I R N (Pr V E R S E R E S U L T)))

(.(L T N T(! ’~ (1 ! -. (C A r t L IT)))
(S I T U P1 5 (1 ~ (C ~~~~ T~~N c R E S U L T))))

-
I

- (SET’~ [5’ (C O P L ’- T)) (GO LCU~
))) -

-
- L~

—
— n— —. — — — — r — — e — 4

hJ ~~J - —~--- —-~~~~~~~ - —— ——---—- - — -—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - —--

— - - - - — — ~4 4 L  ~~~~_ - ~~~~~~~~~~~~~~ -- — - -  - - - -

108

(0  LFIJI: F I t l F~ - (LST r;~) 
- 

-
CPRO (, (‘;L’-ULT)

LO G!’ ( C U N U  ( ( N I L L  1S T )  ( P E l T I~~ ( R E V E R S E  R E S U L T ) ) )
C (FL ( c A t ;  151))  (S n O  R E S U L T  ( C O N S  ( C A R  1 S T)  RE%ULT))))

(SETO 1ST (CII 1ST)) (GO LOOP)))

( D- [F u PJ  B E E  F F K P R  C r Y - ; )
(CG ” IU ( (~~D E I  I N) )

((~~O [ F  ( R P L A C A  ~ Q ( * $ p~~( I N) ) ) )
( (* 0 1 1  ( R P L C A  S. D ( a M A C V (  ~~~j)))) $
(1 ‘USJD E F I I : E U ) ) )  - ;

— 
-

- 
(C  [FUR UCT - - c ,UNOP FEX IN (A) CEO ( ‘ C A P  A )  ( a C A R  ‘!, !,!,! .) ) )

(B [FUN T M ( V L I U N S - O U R D  C c - )  ( T ~~ LA C A  A (
~~f A P  ‘!,!, !,!.)) A)

a

(~~ [F~ ,N D I L D  ( u N  151)
It S! l~. : : S O ’ L  NIL)
(CO Y. i ( ( ‘ T C - ” L O T )  s l i)

( ( L U  ( C A R  L O T )  Il~~) ( C S E 1 0  : :BONE 1) (COR LST))
(1 CP ~~O6 ( C L  V T ) )

LOOP ( C O N S  ( ( N ULL  ((“ P  1)) ( P 1T Ij P~ LST))
• ( ( EQ ( U - C r  1) j IM )  ( P P L A C D  I ( C O O P  1))

• (CSET L. : :UO NE 1) ( R E T U R N  1ST ) )
- 

- C T  (5(1’  
~. 

((DR 1)) (60 L O O P) ) ) ) ) ) )

( O C E U N  R A S 5 O C — D E L Q  ( I Tt ’  L S T )
( (NE TO : : S O ’ E  NIL)
(CUR B C ( A T O ~ 1ST )  511) -

( ( C O  ( C O A R  L S T )  IY M )  ( ( S O lo  : :DONE T )  ( ( DR 1ST) )
(I ( F’uoC ( C L  151) )

LOOP (CU R D ( ( A T O M  ( C Q R  L ) ) .  ( R E T U R N  1S T ) )
( ( [0  ( C D ~~r,p 1) ITM )  (P~- L A C D  I ( C D D R  1))

- ( (S IT ,. : :t ,O NE T) ( R E T U R N  1ST) )
(7 (SLID I (CDR 1)) (60 LOOP)))))))

CD ~~FUN A S S O C — O C L O  ( IT M  1ST) -

(C SETQ ::DU NE NIL )
- (CuRS ((oTOM 1ST) 1411

( (V  (C A A R  LST ) ITM) ((‘[To ::DONE 1) (CD R 1ST))
C T  ( P R O G  ( ( I  LII))

LOOP ( (050  ( ( A T OM (CCN L)) (RETURN 1ST))
- ( ( E R  (CAc -~~p L) TIM) (RPLACD I ( C D D R  1))

(CSETQ ::BORE T) (RETURN 1ST))
CT (SOlO I (COP 1)) (GO LOOP)))))))

(0 [FUN D E L E T E  ( I T M  1S T )  - - 
-

( C S ( I G  : : U C N L  NIL)
IC~~ND ((;TO’ 151) t~IL)((LQU L (CAP 1ST) IT M )  (CSLTQ :IDONE I) (CDR 151)) —

- - (1 (P-- 6 (Ci 1ST)) -
LOOP (C~~ND C(Ni’LL (COR 1)) (RETURN 1ST))

• - • (([DUAL (CA DR 1) J i M )  CR PLAC D L (CDDR 1))
(CSFTQ ~:DO’4E T) (RETURN 1ST))

- 
(T ~~ El0 1 ( C O P  1)) (GO LOOP)))))))

CD (INN UO-~~OOP MAC R O (VAR S EXIT • tIODY )(P M~~ç, (11.15) (RE IU ~~; •

(A l - pOut (LIST ~l ~OG (APPEND (INTO VAR S (LAMO DA Cv)
CLIST (CAR V ) (CADR V)))) -, -

( S O l O  !NCS ( I N T O  V A R S  C L A M ’~DA C V )

—

• — - •~~ - —-—-.- - - - ------ ,---- - - -,-—-——‘—.‘--- - - —— •-~~---- *•- - - — — —-—--- -• --- ‘4~ ’~ 
— - - .-‘* —,-—— — - — — _

~
___!•_c_

~~
_

iL



-r

- - ~~~~~~~~~~~~~~~~~~~~~ - - -  - - - . -  -~~~~ - —------- - --- ‘-~~~~~ ‘----- - - -  _•-•__-_ ~~-*~~ -~~,__. ____ - ~~~~~~~~~~~~~~~~~~~ -- - --- - - —-—- - - —  - - - - 4~~~. .••—~~—~~~~ I

109

1
4

(L I S T  (I N T E R N  (G E N S Y M ))
(CORD ((CDDR v) ((ADOR V))

- CT 1)))))) )
- ‘LOOP

(LIST COND (LIST (CAR EXIT) (LIST ‘R E T U R N
- (CCP.D- ((COP EXIT )

• . (CORD ((CDDR ~ xjT )(CURS DO ((DR EXIT)))
(1 (CADR EXIT))))

- CT NIL))))))
(APPEND PODY

(APPEND (INTO—N
( L A M B D A  (V  I) ( L IST ‘~S E T Q  ( C A R  V )

- (LIST PLUS (CAR V ) (CAR 1))))
- V A R S  I N CS )

‘((GO IOOP)))))))) -

(011CR INTERN (A) (CGMP~~ESS (EXPLODE A)))
a

— CD [FUN IP:D—FIRST (1ST CR17) 
-

(PRO5 C) LOOP (CORD ((ATOM IS’) (RETURN NIL))
((CR17 ((AR 151)) (RITURN 1ST))
(7 (SETQ 1ST (~~DR 1ST)) (GO LOOP)))))

(011CR INTO (1ST FR ) -(P1 06 (RESULT) -

LOOP (CO ~4D ((ATOM 1ST) (RETURN (REVERSE RESULT)))) -

(Solo RESULT (CONS (114 ((AR 157)) RESULT))
(SETQ 1ST (COP 1ST)) (GO LOOP)))

(D [FUN MAPC (1ST FR) -
( P1( 06 C) - :

LOOP ( CORD ( ( A T O M  1ST) ( R ET U R N  N I L) ) )
(IN (CAR 1ST))

- 

- 
(SETQ 157 (COP 1ST)) (GO LOOP)))

(DLFUR RA SSOC (ITM 1ST) -

(PRoc- C ) •
LOUP (CORD ((ATOM 151) (RETURN Nil))

(CEO ITM (CDAR - 1ST)) (RETURN (CAR 1ST))))
(SETO 1ST (COP 1ST)) (00 LOOP))) —

CD (FUN PUTPROP MACNO (K 2 Y) (LIST ‘PUT K 7 2))

(DIFLaPI IMPLODE MACRO (K) (LIST ‘COMPRESS K ))

(DEFUR PLIST MACRO CX) (LIST ‘aCD R K ))

(011CR RE- M O B (A)
(MAK[ LDII3O UF4D A - - - :
(RPLACD A NIL )

(DEFUR A LI LI UT (ITM 1ST)
(COR D ((ATOM LSl ) 1ST)

((EQ IIM (CAR 1ST)) (COP 1ST)) -

CT (CON S ((Ak 1ST) (A1LPUT ITM (COP 1ST)))))) 
- 

- -

(011CR REQ MA CRO (K Y) (LIST NOT (LIST ‘(0 K Y)))
- 

I 
- 

-

t-’ :-
I ~

,- -~
- -~~~ - -

— ——v ,-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ -- - - - ‘- -- ~~~~~~ - ‘  ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 

-
I

- I

_ _

- -

~~~~ia~ —b ~~~~~~ - ~~~~L~-



- —-S - - - ~~‘S - 
_
~~~~~~ ~ _s _4~~~ L~~~~~.- . -~~~~•.. ~L - _ ,  -~~ ~~ -‘

110

CD [101- N E CUA L MACRO (K Y) (11 ST ROT (LIST ‘EQUAL K Y))) -i -

(D I F UN A Uc- P RO P (A T M PRP IT~~)
-

•
(PUT AT M F R P (CONS IT~ (GET Afli PRE))))

(0 iFUN CR 101 1 (1S T)
(COR D ((SILL 1ST) 1411)

(C ~~E - Y P L R (CAR 1S T) (CD I : 1 S T)) (UNIQ UE (C O P 1 S T)))
(1 (CONS (CAP 1ST) (U’.ICUE ((DR 151)))))) - - -

(011C R 1?4 STA N C S I P U C S U (L S T)
(PROC C)

LOOP ((014 0 ((NULL SIJBLS1) (POTUPN STRUC)))
(S I T U S T R U C (SUVT (CD~~R SUULST) (CAA R SUBLST) STRUC))
(SET O SLP~-&ST (COP SLIPLST))
(GO L C O P~~)) -

(DUNN EOIJ1V (PAll PAT?)
(CORD C (N 0 0 0 A L (LENGTH PA T1) (LENGTH PAT?)) NIL)
(T (PROC (PAI1T) C S t TQ PA T1T PAT1)

LOOP1 (CORD ((NULL Pc-TI) (GO LOOP?))
4

S
- ((ME’-ti -ER (CAR PAIl) P A T ?)

(SETI; PAT1 (CUP PAll)) (GO IOOPI))
CT (R ETURN 1411))) -

LOOP2 (CORD ((NUL L PAT2) (R ET U R N T)) -;

((MEM [;ER (CAR PAT ~’) PAT1T)
‘ (Solo r’AT2 (COP PAT?)) (GO LOOP?))

(7 (RETURN 1411)))))))

(011CR U N I Q I J E — A R T (151 CR11)
(CO RD ((A T O !~ 1ST) 1ST) - - -

((SATISFIES (CAR LST) (CDP 1ST) CRIT) I -
CUNIOCI —WR I ((DR 1ST) CR11))
(T (CONS (CAR 1ST) (UNIOUE—t4 PT (CON 1ST) tRIT)))))

(DL ILN S A T I S F I E S (iTEM LST CR11) - - - -

(PRO C C) -

LOOP (COND ((NUtL 1ST) (RETURN NIL))
((CR11 iTEM ((AR 151)) (RETURN (CAR 1ST)))
CT (SETQ 1ST (CDR 1ST)) (60 LOOP)))))

~(C FUPI SUBSET ($111 SET2) ‘ SrTl SUSET OF SET??
-

(PROC C) LOOP (CORD (CISOT (AND SLTl (MEMBE R (CAR SET1) So12)))
(P FIUR N (NULL SO I l)))

(5(70 SET1 ((DR SET 1)) (60 LOOP)))

• ([E IU !4 NTAI L (N 1ST) ? RETUR N L A S T N FIT S OF 1ST
(P R O C C) L ’ C P (C O R D ((Z E R O P 1.) (T E T U P N 1S T)) —

(1 (SETu N (SUB1 N)) (SETO 151 (COP 1ST)) (GO LOOP)))))

C IC FUN OCCURS—IN (ITM STR) ? RECU RSIVE (MEMRLR) FNCN
CC OND ((ATOM SIR) (IQUA L ITM STR))

(1 (Ow (OCCURS—IN ITM (CAR STR)) (OCCURS—IN h R (CDR SIR))))))

([(F U N S U B T R A C T (5(11 5 (72) ? S E T O P E R A T I O N : S E T 2 S E T I
(CORD ((~~~‘L1 5(12) N IL)
- ((R L N I 1 I R (CAP SET?) SET1) (SUBTRACT 5 (71 (COP SET?)))

(1 (CONS (CAR SET?) (SUPTRACT SF71 - ((DR S(T2))))))

e

- - - - _____________ - I -,.--~_,_ - ...~-_.-
~~~~~~~~ 

- - ~— . -  
~~~~~~~~~~~~~~~ 

- *

—~~~~~ -S — ~~ _
~~~A •~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~ —~~~~~~ ---‘-“ •~ — 

-
-

- ~~ .~~~
L_ -

~~~
--- -

~ 

- 
-~~~ ~~~~~~~~~~~~~~~ - - - - _ -

11~1

- - 

(((FUR BR EADTH—FIRST (1ST 1(1 DEPTH )
(PROG (RESULT NEXT )

(WHILE (AND (GPEAIER P DEPTH 0)
(SLIG NEXT (IN DEX (INTL 151 FCI) NIL APPEND ))) —

- - (PROd . (SETO DEPTH (SUB1 D E P T H ) )
(5110 RESU LT (A PPEN D RESULT NEXT))
(5( 10  1ST NEXT)))

(RETURN RESULT )))

- (0 (FUN NEWSYM C) (INTERN (GERSY?’)))

- (011CR U%IFY (TEST1 VARSI TEST? yAkS? )
( LO RD UNEQ UAL ( L E N G T H  TESTI) (LENGTH TEST?)) NIL ) -

- (1 ( P R O C  (b INDS IEMP1 1E M P2 )  ( G O IOOP1)
• LOOP ( S E - T O  T IS I1  ( (O k  l E- S i l ) )  (5110 1 0 S T 2  (C O P T E S T ? ) )

LOO P 1
(CORD ((NULL TEST1 ) ( P E T U ~~ (LIST 91N1-S)))

( ( M E M B E R  ( C A R  T E S T 1 )  V i - P S 1 )  -

(CORD (~(NErbER ( C A R  10512)  V f l~S 2 )
(Silo  TE LP 1  ( A S S O C  (C~~R 1(511) BINDS))
( S O l O  TE~~P2 ( A S S O C 2  ( C A P  T E S T ? )  B I N D S) )
((01.0 ((AND (NULL TFMP 1) (NULL I E~~P?)

- 
- (SETs HiNDS (cO~.S (CONS (CAR 1(511) - -

- (CAR TEST?)) BiNDS))
- (GO IOCP) )

• ((( 0 T(’Pl 7(MP?) (GO LOOP))
• CT (R E T t ’~~N N i t ) ) ) )

(1 (PPJURN N I L) ) ) )
((OR (NLOUA I (~~AR T E ST 1 ) (CAR TEST?)) - -

- (M EME- E-. R ( C A R  T E S T ? )  V A P S ? )) 4 
-- (RETURN NIL))

CT (GO IOOP)))))))

- (0 1 1 C R  A SSOC2 (ITM 151)
(PROc () LOOP (CORD C~~ IuLL 1ST) (RETURN NIL ))

((EUUAL JIM (C DAR 151)) (RETURR (CAP 1ST))) —

CT (SETO 1ST (COP 1ST)) (GO L O O P ) ) ) ) )

- ( O & F I J N  W~~1LE MACRO (PROD • BODY)
(LiST PROC . uIL ‘LOOP
(L I S T  CO PID ~L ]ST PRED (STACK BODY) ‘ (G O  LOOP))

(1 (RETURN)))))

(0 [FUR TR(ESIZE (K)
((011 0 ((ATOM X) 0)

- - (1 (PLUS 1 (TREESIZE (CAR K)) (TREESIZ .E (COP K))))))

C O I F U R  G R A P H S I Z E  ( G R A P H )  ( G R A P H S IZ E 1  G R A P H  N I L) )  - 1
CD (FuN GRA P HSIZE1 (6 SEEN)

(COR D ((OR (ATOM G) (TMIMQ 6 5((~~)) (~
) - -

(7 (PluS 1 (&PAPHSIZ(l (CAR 6) (CONS 6 SEEN))
- - ( c - R A r - H S I Z ( 1  ( C O P  6) (CO NS 6 S E E N ) ) ) ) ) )

- ‘
I 

-

- CD [FUR INDENT (N) -
(PROC C) LOOP (CORD ((LESSP (SETO N (SU~Il N)) 0) ( R E T U R N  NIL)) )

- -
~ (PRIR1 ! ) (GO LOOP))) -

:~~~-~~
- 

~~~

CD t r u ~- NON IL (1ST)
~~~~~~~ - 

- (CORD ((NUll 1ST) NIL- ) 
-((ATOM 1ST) 151)

I’- -~ ((NULL (CAR 1ST)) (NONIL (COP 1ST)))- 

~1III I_±__ 



-

~~~~

- -—~~~ —--- -.-- —‘—-~~~~
- --- ~~~~~~~~~~~~~~~~~~~~ ~-- — -- -- ---.-- ‘~ —~--~~

—
- - ~~~~~~~~~~~~~~~~~~~~~~~~ -~ ~~~~~ - ~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~

-

112
-

(1 (APPEND (L IST (CAR LST)) (NONIL (CDR 1ST))))))

(Dt1 - ~N SC-~JA SFI MA C R O (1ST)
(L I S T 1140(1. IS1 NIL A P P E N D))

-
(0111Th DAY IIM E C)

(P R O C (F~~A C S E C MINU FlOUR TIM)
(SE-TO T 3 ~

(O T J M E))
(SE-TO I P A C (~~LMA 1NDlR T i M 1Q~ O))
(5(10 SEC (~~UOT 1E~~T T1’~ 100-fl)(5(10 M INU (‘ UOTI ENI S~~C 60))
(5(70 SIC (R E M A I N D E R S EC 60)) -

(5(10 HOUR (O U O T I (P 4 1 MINU 60)) -

(SETO !-1 J 5j (PIN A I R D E R ‘-T INU 6C))
(PR IRl HO UR) •

-

(S E T Q MINLI (S IR I NG (C O M P R E S S (C O N S : (EXPLODE MINU)))))
(PRIP41 MISC)
(SETQ SIC (STRING (COMDPESS (CONS : (EXPLODE SEC)))))
(PRIN1 SIC)
(PHIN1 (COM PRESS (CONS — . (EXPLODE FRAC)))) -

,

(lEPeR])))
-

4 (DIFUN IA K E — A L I S T (VARS ~(AL5)(C O t ~D (C ~~UtL V A L S) V A i~’~) - ((N t J L L V A R S) VALS)
(I (COP:5 (CONS (CAR VANS) (CAP VAL S))

CMA KC—A L IST (COR VARS) (CDP VALS))))))

•

-

~~ ~_1_ _ _~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ d



-J~-

I

~~~~~~~

I

_ _

